Back to Search
Start Over
Merge and separation of NuA4 and SWR1 complexes control cell fate plasticity in Candida albicans
- Source :
- Cell discovery, vol 4, iss 1, Cell Discovery, Cell Discovery, Vol 4, Iss 1, Pp 1-16 (2018)
- Publication Year :
- 2018
- Publisher :
- eScholarship, University of California, 2018.
-
Abstract
- Phenotypic plasticity is common in development. Candida albicans, a polymorphic fungal pathogen of humans, possesses the unique ability to achieve rapid and reversible cell fate between unicellular form (yeast) and multicellular form (hypha) in response to environmental cues. The NuA4 histone acetyltransferase activity and Hda1 histone deacetylase activity have been reported to be required for hyphal initiation and maintenance. However, how Hda1 and NuA4 regulate hyphal elongation is not clear. NuA4 histone acetyltransferase and SWR1 chromatin remodeling complexes are conserved from yeast to human, which may have merged together to form a larger TIP60 complex since the origin of metazoan. In this study, we show a dynamic merge and separation of NuA4 and SWR1 complexes in C. albicans. NuA4 and SWR1 merge together in yeast state and separate into two distinct complexes in hyphal state. We demonstrate that acetylation of Eaf1 K173 controls the interaction between the two complexes. The YEATS domain of Yaf9 in C. albicans can recognize an acetyl-lysine of the Eaf1 and mediate the Yaf9-Eaf1 interaction. The reversible acetylation and deacetylation of Eaf1 by Esa1 and Hda1 control the merge and separation of NuA4 and SWR1, and this regulation is triggered by Brg1 recruitment of Hda1 to chromatin in response nutritional signals that sustain hyphal elongation. We have also observed an orchestrated promoter association of Esa1, Hda1, Swr1, and H2A.Z during the reversible yeast–hyphae transitions. This is the first discovery of a regulated merge of the NuA4 and SWR1 complexes that controls cell fate determination and this regulation may be conserved in polymorphic fungi.
- Subjects :
- 0301 basic medicine
biology
lcsh:Cytology
Chemistry
Cell Biology
Histone acetyltransferase
Cell fate determination
biology.organism_classification
Biochemistry
Chromatin remodeling
Article
Chromatin
Cell biology
03 medical and health sciences
030104 developmental biology
Infectious Diseases
Acetylation
biology.protein
Genetics
Histone acetyltransferase activity
Histone deacetylase activity
Biochemistry and Cell Biology
lcsh:QH573-671
Candida albicans
Molecular Biology
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Cell discovery, vol 4, iss 1, Cell Discovery, Cell Discovery, Vol 4, Iss 1, Pp 1-16 (2018)
- Accession number :
- edsair.doi.dedup.....0b3de0f34af04fb11857b4b0756fef75