Back to Search
Start Over
Normal resonances in a double Hopf bifurcation
- Source :
- Indagationes Mathematicae, 32(1), 33-54. ELSEVIER SCIENCE BV, Indagationes Mathematicae, 32(1), 33. Elsevier
- Publication Year :
- 2021
- Publisher :
- ELSEVIER SCIENCE BV, 2021.
-
Abstract
- We introduce a framework to systematically investigate the resonant double Hopf bifurcation. We use the basic invariants of the ensuing T 1 -action to analyse the approximating normal form truncations in a unified manner. In this way we obtain a global description of the parameter space and thus find the organising resonance droplet, which is the present analogue of the resonant gap. The dynamics of the normal form yields a skeleton for the dynamics of the original system. In the ensuing perturbation theory both normal hyperbolicity (centre manifold theory) and kam theory are being used.
- Subjects :
- Hopf bifurcation
Mathematics(all)
General Mathematics
Invariants
010102 general mathematics
Dynamics (mechanics)
Resonance
010103 numerical & computational mathematics
KAM theory
Parameter space
Normal forms
01 natural sciences
Action (physics)
symbols.namesake
Resonances
symbols
Centre manifold
0101 mathematics
Perturbation theory
Mathematics
Mathematical physics
Subjects
Details
- Language :
- English
- ISSN :
- 00193577
- Volume :
- 32
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Indagationes Mathematicae
- Accession number :
- edsair.doi.dedup.....0b5b26b0fffd6cb4a976e32dba23a16d