Back to Search Start Over

Scaling the linkage between environmental niches and functional traits for improved spatial predictions of biological communities

Authors :
Manuela D'Amen
Antoine Guisan
Daniel Scherrer
Tamara Münkemüller
James Alexander
Julien Pottier
Heidi K. Mod
Institute of Earth Surface Dynamics
Université de Lausanne = University of Lausanne (UNIL)
Dept Ecol & Evolut
Laboratoire d'Ecologie Alpine (LECA )
Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Unité Mixte de Recherche sur l'Ecosystème Prairial - UMR (UREP)
VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Université Clermont Auvergne [2017-2020] (UCA [2017-2020])
Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)
Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA)
Université de Lausanne (UNIL)
Laboratoire d'Ecologie Alpine (LECA)
Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Université Joseph Fourier - Grenoble 1 (UJF)-Université Grenoble Alpes (UGA)
Ecosystèmes montagnards (UR EMGR)
Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
Source :
Global Ecology and Biogeography, Global Ecology and Biogeography, 2019, 28 (10), pp.1384-1392. ⟨10.1111/geb.12967⟩, Global Ecology and Biogeography, Wiley, 2019, 28 (10), pp.1384-1392. ⟨10.1111/geb.12967⟩, Global Ecology and Biogeography, vol. 28, pp. 1384–1392, Global Ecology and Biogeography, 28 (10)
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

Issue Approaches to predicting species assemblages through stacking individual niche‐based species distribution models (S‐SDMs) need to account for community processes other than abiotic filtering. Such constraints have been introduced by implementing ecological assembly rules (EARs) into S‐SDMs, and can be based on patterns of functional traits in communities. Despite being logically valid, this approach has led to a limited improvement in prediction, possibly because of mismatches between the scales of measurement of niche and trait data. Evidence S‐SDM studies have often related single values of a species’ traits to environmental niches that are captured by abiotic conditions measured at a much finer spatial scale, without accounting for intraspecific trait variation along environmental gradients. Many pieces of evidence show that omitting intraspecific trait variation can hinder the proper inference of EARs from trait patterns, and we further argue that it can therefore also affect our capacity to spatially predict functional properties of communities. In addition, estimates of environmental niches and trait envelopes may vary depending on the scale at which environmental and trait measurements are made. Conclusion We suggest that to overcome these limitations, surveys sampling both niche and trait measurements should be conducted at fine scales along wide environmental gradients, and integrated at the same scale to test and improve a new generation of spatial community models and their functional properties.<br />Global Ecology and Biogeography, 28 (10)<br />ISSN:1466-822X<br />ISSN:1466-8238

Details

Language :
English
ISSN :
1466822X and 14668238
Database :
OpenAIRE
Journal :
Global Ecology and Biogeography, Global Ecology and Biogeography, 2019, 28 (10), pp.1384-1392. ⟨10.1111/geb.12967⟩, Global Ecology and Biogeography, Wiley, 2019, 28 (10), pp.1384-1392. ⟨10.1111/geb.12967⟩, Global Ecology and Biogeography, vol. 28, pp. 1384–1392, Global Ecology and Biogeography, 28 (10)
Accession number :
edsair.doi.dedup.....0bac6ce5012fb57dffdcb3ed248f7099
Full Text :
https://doi.org/10.1111/geb.12967⟩