Back to Search
Start Over
Highly porous and flexible capacitive humidity sensor based on self-assembled graphene oxide sheets on a paper substrate
- Source :
- Sensors and Actuators B: Chemical, Sensors and Actuators B: Chemical, Elsevier, 2019, 298, pp.126892. ⟨10.1016/j.snb.2019.126892⟩
- Publication Year :
- 2019
- Publisher :
- HAL CCSD, 2019.
-
Abstract
- This paper reports the fabrication of capacitive humidity sensors by integrating a graphene oxide sensing layer inside paper substrates. Graphene oxide sheets were self-assembled on the papers’ fibers. A comparative study between several sensors with different concentrations of graphene oxide and different processing times in the graphene oxide suspension is reported. Its aim is to optimize the sensing layer in terms of concentration and thickness towards the fabrication of highly sensitive and porous sensors. The morphology of the fabricated sensors was characterized using scanning electron microscopy, their structure and chemical composition using Raman and infrared spectroscopies. The washability and mechanical strength of the graphene oxide coated paper were tested in water and in an ultrasonic bath. Last, the sensing capabilities of the fabricated devices were tested for a relative humidity ranging from 30% to 90% RH. The optimal sensor is highly porous, hydrophobic and exhibits a good response towards humidity with a low hysteresis. This work presents a low cost alternative for the use of polymers and coated-papers as substrates for flexible electronics. It is also a first step towards the integration of flexible electronics into substrates, which enables the fabrication of highly porous, economical and flexible devices ideal for air flow monitoring, e-dressings and e-textiles.
- Subjects :
- Fabrication
Materials science
Capacitive sensing
Oxide
Nanotechnology
02 engineering and technology
Substrate (electronics)
010402 general chemistry
7. Clean energy
01 natural sciences
law.invention
chemistry.chemical_compound
law
Materials Chemistry
Electrical and Electronic Engineering
Instrumentation
ComputingMilieux_MISCELLANEOUS
Graphene
Metals and Alloys
021001 nanoscience & nanotechnology
Condensed Matter Physics
Flexible electronics
0104 chemical sciences
Surfaces, Coatings and Films
Electronic, Optical and Magnetic Materials
[SPI.TRON]Engineering Sciences [physics]/Electronics
chemistry
Ultrasonic sensor
0210 nano-technology
Layer (electronics)
Subjects
Details
- Language :
- English
- ISSN :
- 09254005
- Database :
- OpenAIRE
- Journal :
- Sensors and Actuators B: Chemical, Sensors and Actuators B: Chemical, Elsevier, 2019, 298, pp.126892. ⟨10.1016/j.snb.2019.126892⟩
- Accession number :
- edsair.doi.dedup.....0bbfa3fe4b2211d56ae4fb2cc9f7f3d6