Back to Search Start Over

The origin of accreted stellar halo populations in the Milky Way using APOGEE, Gaia , and the EAGLE simulations

Authors :
Robert W. O'Connell
Carlos Allende Prieto
Sten Hasselquist
Jennifer A. Johnson
José G. Fernández-Trincado
Borja Anguiano
Steven R. Majewski
Joel Pfeffer
Jo Bovy
Matthew Shetrone
Christian R. Hayes
J. Ted Mackereth
Ricardo P. Schiavon
Jon A. Holtzman
Patricia B. Tissera
Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM)
Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC)
Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)
Source :
Monthly Notices of the Royal Astronomical Society, Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P-Oxford Open Option A, 2019, 482 (3), pp.3426-3442
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

Recent work indicates that the nearby Galactic halo is dominated by the debris from a major accretion event. We confirm that result from an analysis of APOGEE-DR14 element abundances and $\textit{Gaia}$-DR2 kinematics of halo stars. We show that $\sim$2/3 of nearby halo stars have high orbital eccentricities ($e \gtrsim 0.8$), and abundance patterns typical of massive Milky Way dwarf galaxy satellites today, characterised by relatively low [Fe/H], [Mg/Fe], [Al/Fe], and [Ni/Fe]. The trend followed by high $e$ stars in the [Mg/Fe]-[Fe/H] plane shows a change of slope at [Fe/H]$\sim-1.3$, which is also typical of stellar populations from relatively massive dwarf galaxies. Low $e$ stars exhibit no such change of slope within the observed [Fe/H] range and show slightly higher abundances of Mg, Al and Ni. Unlike their low $e$ counterparts, high $e$ stars show slightly retrograde motion, make higher vertical excursions and reach larger apocentre radii. By comparing the position in [Mg/Fe]-[Fe/H] space of high $e$ stars with those of accreted galaxies from the EAGLE suite of cosmological simulations we constrain the mass of the accreted satellite to be in the range $10^{8.5}\lesssim M_*\lesssim 10^{9}\mathrm{M_\odot}$. We show that the median orbital eccentricities of debris are largely unchanged since merger time, implying that this accretion event likely happened at $z\lesssim1.5$. The exact nature of the low $e$ population is unclear, but we hypothesise that it is a combination of $\textit{in situ}$ star formation, high $|z|$ disc stars, lower mass accretion events, and contamination by the low $e$ tail of the high $e$ population. Finally, our results imply that the accretion history of the Milky Way was quite unusual.<br />19 Pages, 11 Figures (+4 in abstracts), Accepted for publication in MNRAS. ** Important new additions include an appendix showing numerical convergence tests, and a new figure and accompanying text demonstrating the consistency in element abundances between accreted satellites in EAGLE and the high eccentricity stars from APOGEE **

Details

Language :
English
ISSN :
00358711 and 13652966
Database :
OpenAIRE
Journal :
Monthly Notices of the Royal Astronomical Society, Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P-Oxford Open Option A, 2019, 482 (3), pp.3426-3442
Accession number :
edsair.doi.dedup.....0bc4fb7c1e7f5688e1770ca212a3cec1