Back to Search
Start Over
Osteoclast differentiation from human blood precursors on biomimetic calcium-phosphate substrates
- Source :
- UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Recercat. Dipósit de la Recerca de Catalunya, instname
- Publication Year :
- 2017
-
Abstract
- The design of synthetic bone grafts to foster bone formation is a challenge in regenerative medicine. Understanding the interaction of bone substitutes with osteoclasts is essential, since osteoclasts not only drive a timely resorption of the biomaterial, but also trigger osteoblast activity. In this study, the adhesion and differentiation of human blood-derived osteoclast precursors (OCP) on two different micro-nanostructured biomimetic hydroxyapatite materials consisting in coarse (HA-C) and fine HA (HA-F) crystals, in comparison with sintered stoichiometric HA (sin-HA, reference material), were investigated. Osteoclasts were induced to differentiate by RANKL-containing supernatant using cell/substrate direct and indirect contact systems, and calcium (Ca++) and phosphorus (P5+) in culture medium were measured. We observed that OCP adhered to the experimental surfaces, and that osteoclast-like cells formed at a rate influenced by the micro- and nano-structure of HA, which also modulate extracellular Ca++. Qualitative differences were found between OCP on biomimetic HA-C and HA-F and their counterparts on plastic and sin-HA. On HA-C and HA-F cells shared typical features of mature osteoclasts, i.e. podosomes, multinuclearity, tartrate acid phosphatase (TRAP)-positive staining, and TRAP5b-enzyme release. However, cells were less in number compared to those on plastic or on sin-HA, and they did not express some specific osteoclast markers. In conclusion, blood-derived OCP are able to attach to biomimetic and sintered HA substrates, but their subsequent fusion and resorptive activity are hampered by surface micro-nano-structure. Indirect cultures suggest that fusion of OCP is sensitive to topography and to extracellular calcium. Statement of Significance The novelty of the paper is the differentiation of human blood-derived osteoclast precursors, instead of mouse-derived macrophages as used in most studies, directly on biomimetic micro-nano structured HA-based surfaces, as triggered by osteoblast-produced factors (RANKL/OPG), and influenced by chemistry and topography of the substrate(s). Biomimetic HA-surfaces, like those obtained in calcium phosphate cements, are very different from the conventional calcium phosphate ceramics, both in terms of topography and ion exchange. The role of these factors in modulating precursors’ differentiation and activity is analysed. The system is closely reproducing the physiological process of attachment of host cells and further maturation to osteoclasts toward resorption of the substrate, which occurs in vivo after filling bone defects with the calcium phosphate grafts.
- Subjects :
- 0301 basic medicine
Topography
Podosome
Osteoclasts
Bone resorption
02 engineering and technology
Biochemistry
Hidroxiapatita
Biomimetic Materials
Ionic exchange
biology
Cell Differentiation
Osteoblast
General Medicine
021001 nanoscience & nanotechnology
Cell biology
Resorption
medicine.anatomical_structure
Differentiation
Osteoclast
0210 nano-technology
Biotechnology
musculoskeletal diseases
Materials science
Biomedical Engineering
chemistry.chemical_element
Calcium
Enginyeria dels materials [Àrees temàtiques de la UPC]
Hydroxyapatite
Biomaterials
03 medical and health sciences
Cell Adhesion
medicine
Extracellular
Humans
Molecular Biology
Myeloid Progenitor Cells
RANK Ligand
Acid phosphatase
Osteopatia
Biomaterial
Nanostructures
Durapatite
030104 developmental biology
chemistry
Bone Substitutes
biology.protein
Biomedical engineering
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Recercat. Dipósit de la Recerca de Catalunya, instname
- Accession number :
- edsair.doi.dedup.....0bd9617f5110701733d4eea6b3947344