Back to Search Start Over

Human-Specific Evolution and Adaptation Led to Major Qualitative Differences in the Variable Receptors of Human and Chimpanzee Natural Killer Cells

Authors :
Achim K. Moesta
Raja Rajalingam
Lisbeth A. Guethlein
Peter Parham
Laurent Abi-Rached
Source :
PLoS Genetics, PLoS Genetics, Vol 6, Iss 11, p e1001192 (2010)
Publication Year :
2010
Publisher :
Public Library of Science, 2010.

Abstract

Natural killer (NK) cells serve essential functions in immunity and reproduction. Diversifying these functions within individuals and populations are rapidly-evolving interactions between highly polymorphic major histocompatibility complex (MHC) class I ligands and variable NK cell receptors. Specific to simian primates is the family of Killer cell Immunoglobulin-like Receptors (KIR), which recognize MHC class I and associate with a range of human diseases. Because KIR have considerable species-specificity and are lacking from common animal models, we performed extensive comparison of the systems of KIR and MHC class I interaction in humans and chimpanzees. Although of similar complexity, they differ in genomic organization, gene content, and diversification mechanisms, mainly because of human-specific specialization in the KIR that recognizes the C1 and C2 epitopes of MHC-B and -C. Humans uniquely focused KIR recognition on MHC-C, while losing C1-bearing MHC-B. Reversing this trend, C1-bearing HLA-B46 was recently driven to unprecedented high frequency in Southeast Asia. Chimpanzees have a variety of ancient, avid, and predominantly inhibitory receptors, whereas human receptors are fewer, recently evolved, and combine avid inhibitory receptors with attenuated activating receptors. These differences accompany human-specific evolution of the A and B haplotypes that are under balancing selection and differentially function in defense and reproduction. Our study shows how the qualitative differences that distinguish the human and chimpanzee systems of KIR and MHC class I predominantly derive from adaptations on the human line in response to selective pressures placed on human NK cells by the competing needs of defense and reproduction.<br />Author Summary Natural killer (NK) cells are versatile lymphocytes that make essential contributions to immune defense and placental reproduction. Essential to NK cell development, diversification and function are variable families of surface receptors that recognize equally variable determinants of polymorphic major histocompatibility complex (MHC) class I molecules, better known as the tissue types matched in clinical organ transplantation. These ligand-receptor interactions evolve rapidly, exhibiting much species specificity and convergent evolution. Consequently, mice represent a poor model, because their receptors are so disparate from the independently evolved human counterparts that are restricted to simian primates. To identify unique and shared aspects of human NK cell biology, we have defined the genomics, population biology, and immunology of variable chimpanzee NK cell receptors and ligands to a level permitting accurate, informed comparison with the well-characterized human system. In both receptors and ligands there are dramatic, qualitative differences between humans and chimpanzees. We show these differences arose during human evolution from the last common human–chimpanzee ancestor, while the chimpanzee system remained relatively stable. That two so closely related species exhibit major differences in NK cell receptors and ligands testifies to the strong and varying selection imposed by the different demands and competing needs of defense and reproduction.

Details

Language :
English
ISSN :
15537404 and 15537390
Volume :
6
Issue :
11
Database :
OpenAIRE
Journal :
PLoS Genetics
Accession number :
edsair.doi.dedup.....0be4c4ee872fe1e2b597c5ece57e03c5