Back to Search Start Over

Hydrodynamics of Weakly Deformed Soliton Lattices. Differential Geometry and Hamiltonian Theory

Authors :
Boris Dubrovin
S. P. Novikov
Publication Year :
1989

Abstract

CONTENTS Introduction Chapter I. Hamiltonian theory of systems of hydrodynamic type § 1. General properties of Poisson brackets § 2. Hamiltonian formalism of systems of hydrodynamic type and Riemannian geometry § 3. Generalizations: differential-geometric Poisson brackets of higher orders, differential-geometric Poisson brackets on a lattice, and the Yang-Baxter equation § 4. Riemann invariants and the Hamiltonian formalism of diagonal systems of hydrodynamic type. Novikov's conjecture. Tsarev's theorem. The generalized hodograph method Chapter II. Equations of hydrodynamics of soliton lattices § 5. The Bogolyubov-Whitham averaging method for field-theoretic systems and soliton lattices. The results of Whitham and Hayes for Lagrangian systems § 6. The Whitham equations of hydrodynamics of weakly deformed soliton lattices for Hamiltonian field-theoretic systems. The principle of conservation of the Hamiltonian structure under averaging § 7. Modulations of soliton lattices of completely integrable evolutionary systems. Krichever's method. The analytic solution of the Gurevich-Pitaevskii problem on the dispersive analogue of a shock wave § 8. Evolution of the oscillatory zone in the KdV theory. Multi-valued functions in the hydrodynamics of soliton lattices. Numerical studies § 9. Influence of small viscosity on the evolution of the oscillatory zone References

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....0befef0eb0c47e3f30932faca834d18d