Back to Search Start Over

Connectivity-Defined Subdivisions of the Intraparietal Sulcus Respond Differentially to Abstraction during Decision-Making

Authors :
Melissa Newton
Savannah L. Cookson
Mark D'Esposito
Andrew S. Kayser
Source :
J Neurosci
Publication Year :
2022
Publisher :
Society for Neuroscience, 2022.

Abstract

The intraparietal sulcus (IPS) has been implicated in numerous functions that range from representation of visual stimuli to action planning, but its role in abstract decision-making has been unclear, in part because low-level functions often act as confounds. Here, we address this problem using a task that dissociates abstract decision-making from sensory salience, attentional control, motor planning, and motor output. Functional MRI data were collected from healthy female and male human subjects while they performed a policy abstraction task requiring use of a more abstract (second-order) rule to select between two less abstract (first-order) rules that informed the motor response. By identifying IPS subdivisions with preferential connectivity to prefrontal regions that are differentially responsive to task abstraction, we found that a caudal IPS (cIPS) subregion with strongest connectivity to the pre-premotor cortex was preferentially active for second-order cues, whereas a rostral IPS subregion (rIPS) with strongest connectivity to the dorsal premotor cortex was active during attentional control over first-order cues. These effects for abstraction were seen in addition to cIPS activity that was specific to sensory salience, and rIPS activity that was specific to motor output. Notably, topographic responses to the second-order cue were detected along the caudal-rostral axis of IPS, mirroring the broader organization seen in lateral prefrontal cortex. Together, these data demonstrate that subregions within IPS exhibit activity responsive to policy abstraction, and they suggest that IPS may be organized into frontoparietal subnetworks that support hierarchical cognitive control. SIGNIFICANCE STATEMENT Abstract decision-making allows us to flexibly adapt our behavior to new contexts. Although much previous work has focused on the role of lateral prefrontal cortex in such decisions, the contributions of parietal cortex have been relatively understudied. Here, we demonstrate that spatially segregated subregions of human IPS with strong functional connections to lateral prefrontal cortex demonstrate activity selective for abstract decisions. This activity can be distinguished from responses resulting from cognitive processes related to sensory salience, attentional control, motor planning, and movement. Together, these findings indicate that different task demands are reflected in the topography of IPS, and they explicitly reveal a role in abstract decision-making.

Details

Language :
English
Database :
OpenAIRE
Journal :
J Neurosci
Accession number :
edsair.doi.dedup.....0c0edec2b25cbe6cf259995dd0f870cb