Back to Search Start Over

Ring structure in the MWC 480 disk revealed by ALMA

Authors :
Gerrit van der Plas
Colette Salyk
Francois Menard
Yao Liu
Daniel Harsono
Nathan Hendler
Giuseppe Lodato
Gregory J. Herczeg
Yann Boehler
Brunella Nisini
Sylvie Cabrit
Henning Avenhaus
Carlo F. Manara
Andrea Banzatti
Paola Pinilla
Giovanni Dipierro
Doug Johnstone
Michael Gully-Santiago
Feng Long
Enrico Ragusa
Elisabetta Rigliaco
Ilaria Pascucci
William J. Fischer
Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112))
Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Cergy Pontoise (UCP)
Université Paris-Seine-Université Paris-Seine-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Source :
Astronomy and Astrophysics, Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, EDP Sciences, 2019, 622, pp.A75. ⟨10.1051/0004-6361/201834157⟩, Astronomy & Astrophysics, Astronomy and Astrophysics (0004-6361), 622, A75
Publication Year :
2019

Abstract

Gap-like structures in protoplanetary disks are likely related to planet formation processes. In this paper, we present and analyze high resolution (0.17*0.11 arcsec) 1.3 mm ALMA continuum observations of the protoplanetary disk around the Herbig Ae star MWC 480. Our observations for the first time show a gap centered at ~74au with a width of ~23au, surrounded by a bright ring centered at ~98au from the central star. Detailed radiative transfer modeling of both the ALMA image and the broadband spectral energy distribution is used to constrain the surface density profile and structural parameters of the disk. If the width of the gap corresponds to 4~8 times the Hill radius of a single forming planet, then the putative planet would have a mass of 0.4~3 M_Jup. We test this prediction by performing global three-dimensional smoothed particle hydrodynamic gas/dust simulations of disks hosting a migrating and accreting planet. We find that the dust emission across the disk is consistent with the presence of an embedded planet with a mass of ~2.3 M_Jup at an orbital radius of ~78au. Given the surface density of the best-fit radiative transfer model, the amount of depleted mass in the gap is higher than the mass of the putative planet, which satisfies the basic condition for the formation of such a planet.<br />Accepted for publication in A&A, 11 pages, 8 figures

Details

Language :
English
ISSN :
00046361
Database :
OpenAIRE
Journal :
Astronomy and Astrophysics, Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, EDP Sciences, 2019, 622, pp.A75. ⟨10.1051/0004-6361/201834157⟩, Astronomy & Astrophysics, Astronomy and Astrophysics (0004-6361), 622, A75
Accession number :
edsair.doi.dedup.....0c278cfcab21eb98afb873b2f925ea39