Back to Search
Start Over
Chlorite oxidized oxyamylose differentially influences the microstructure of fibrin and self assembling peptide hydrogels as well as dental pulp stem cell behavior
- Source :
- Scientific Reports, Vol 11, Iss 1, Pp 1-12 (2021), Scientific Reports
- Publication Year :
- 2021
- Publisher :
- Nature Portfolio, 2021.
-
Abstract
- Tailored hydrogels mimicking the native extracellular environment could help overcome the high variability in outcomes within regenerative endodontics. This study aimed to evaluate the effect of the chemokine-binding and antimicrobial polymer, chlorite-oxidized oxyamylose (COAM), on the microstructural properties of fibrin and self-assembling peptide (SAP) hydrogels. A further goal was to assess the influence of the microstructural differences between the hydrogels on the in vitro behavior of human dental pulp stem cells (hDPSCs). Structural and mechanical characterization of the hydrogels with and without COAM was performed by atomic force microscopy and scanning electron microscopy to characterize their microstructure (roughness and fiber length, diameter, straightness, and alignment) and by nanoindentation to measure their stiffness (elastic modulus). Then, hDPSCs were encapsulated in hydrogels with and without COAM. Cell viability and circularity were determined using confocal microscopy, and proliferation was determined using DNA quantification. Inclusion of COAM did not alter the microstructure of the fibrin hydrogels at the fiber level while affecting the SAP hydrogel microstructure (homogeneity), leading to fiber aggregation. The stiffness of the SAP hydrogels was sevenfold higher than the fibrin hydrogels. The viability and attachment of hDPSCs were significantly higher in fibrin hydrogels than in SAP hydrogels. The DNA content was significantly affected by the hydrogel type and the presence of COAM. The microstructural stability after COAM inclusion and the favorable hDPSCs' response observed in fibrin hydrogels suggest this system as a promising carrier for COAM and application in endodontic regeneration. Supported by the Fund for Scientific Research-Flanders (FWO-Vlanderen) Grant number (G089213N), Research Council of KU Leuven Grant Numbers (C24/18/068), (C14/17/111), and KU Leuven Equipment Grant (KA/16/084).
- Subjects :
- 0301 basic medicine
Male
Microscopy, Atomic Force
law.invention
0302 clinical medicine
law
Fiber
Multidisciplinary
biology
Chemistry
Stem Cells
Hydrogels
Self-healing hydrogels
Medicine
Female
Oxidation-Reduction
Self-assembling peptide
Regenerative endodontics
Adolescent
Cell Survival
Science
macromolecular substances
complex mixtures
Fibrin
Article
Endodontics
Biomaterials
03 medical and health sciences
Young Adult
Dental biomaterials
Chlorides
Confocal microscopy
Dental pulp stem cells
Humans
Dental Pulp
Cell Proliferation
technology, industry, and agriculture
030206 dentistry
DNA
Nanoindentation
030104 developmental biology
Dentistry
biology.protein
Biophysics
Mesenchymal stem cells
Amylose
Peptides
Subjects
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 11
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Scientific Reports
- Accession number :
- edsair.doi.dedup.....0c8a929d655156948dceb7378d9d31d4