Back to Search Start Over

Tailoring Water Adsorption Capacity of APO-Tric

Authors :
Nataša Logar
Amalija Golobič
Alenka Ristić
Suzana Mal
Source :
Crystals, Vol 11, Iss 773, p 773 (2021), Crystals, Volume 11, Issue 7, Crystals, str. 1-12 : Ilustr., Vol. 11, iss. 7, article no. 773, Jul. 2021, COBISS-ID: 36677893, Crystals, vol. 11, no. 7, 773, pp. 1-12, 2021., Crystals, vol. 11, no. 7, 773, 2021.
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Microporous triclinic AlPO4-34, known as APO-Tric, serves as an excellent water adsorbent in thermal energy storage, especially for low temperature thermochemical energy storage. Increased water adsorption capacity of thermochemical material usually leads to higher thermal energy storage capacity, thus offering improved performance of the adsorbent. The main disadvantage of aluminophosphate-based TCM materials is their high cost due to the use of expensive organic templates acting as structure directing agents. Using ionic liquids as low cost solvents with associated structure directing role can increase the availability of these water adsorbents for TES applications. Here, a green synthesis of APO-Tric crystals at elevated and ambient pressure by using 1-ethyl-3-methyl imidazolium bromide ionic liquid is presented. Large 200 µm romboid shaped monocrystals were obtained at 200 °C after 6 days. The structure of APO-Tric and the presence of 1,3-dimetylimidazolium cation in the micropores were determined by single crystal XRD at room temperature and 150 K. Water sorption capacity of APO-Tric prepared by ionothermal synthesis at elevated pressure increased in comparison to the material obtained at hydrothermal synthesis most probably due to additional structural defects obtained after calcination. The reuse of exhausted ionic liquid was also confirmed, which adds to the reduction of toxicity and cost production of the aluminophosphate synthesis.

Details

ISSN :
20734352
Volume :
11
Database :
OpenAIRE
Journal :
Crystals
Accession number :
edsair.doi.dedup.....0c8d90ebc8d82a22027cd91d0ea20dc7
Full Text :
https://doi.org/10.3390/cryst11070773