Back to Search
Start Over
Tuning Genetic Algorithm Parameters to Improve Convergence Time
- Source :
- International Journal of Chemical Engineering, Vol 2011 (2011)
- Publication Year :
- 2011
- Publisher :
- Hindawi Limited, 2011.
-
Abstract
- Fermentation processes by nature are complex, time-varying, and highly nonlinear. As dynamic systems their modeling and further high-quality control are a serious challenge. The conventional optimization methods cannot overcome the fermentation processes peculiarities and do not lead to a satisfying solution. As an alternative, genetic algorithms as a stochastic global optimization method can be applied. For the purpose of parameter identification of a fed-batch cultivation ofS. cerevisiaealtogether four kinds of simple and four kinds of multipopulation genetic algorithms have been considered. Each of them is characterized with a different sequence of implementation of main genetic operators, namely, selection, crossover, and mutation. The influence of the most important genetic algorithm parameters—generation gap, crossover, and mutation rates has—been investigated too. Among the considered genetic algorithm parameters, generation gap influences most significantly the algorithm convergence time, saving up to 40% of time without affecting the model accuracy.
- Subjects :
- Engineering
Mathematical optimization
Meta-optimization
Article Subject
business.industry
General Chemical Engineering
Population-based incremental learning
Crossover
Quality control and genetic algorithms
Control engineering
Genetic operator
Chemical engineering
Genetic algorithm
Mutation (genetic algorithm)
TP155-156
business
Selection (genetic algorithm)
Subjects
Details
- Language :
- English
- ISSN :
- 16878078
- Volume :
- 2011
- Database :
- OpenAIRE
- Journal :
- International Journal of Chemical Engineering
- Accession number :
- edsair.doi.dedup.....0c920bda3756fd7edba940a7bef45792