Back to Search Start Over

Contrasting Roles of the N-Methyl-d-Aspartate Receptor in the Production of Immobilization by Conventional and Aromatic Anesthetics

Authors :
Albert Won
Mark Liao
James M. Sonner
Robert C. Dutton
Michael J. Laster
Ken Solt
John Popovich
Edmond I. Eger
Douglas E. Raines
Franklin V. Cobos
Source :
Anesthesia & Analgesia. 102:1397-1406
Publication Year :
2006
Publisher :
Ovid Technologies (Wolters Kluwer Health), 2006.

Abstract

We hypothesized that N-methyl-d-aspartate (NMDA) receptors mediate some or all of the capacity of inhaled anesthetics to prevent movement in the face of noxious stimulation, and that this capacity to prevent movement correlates directly with the in vitro capacity of such anesthetics to block the NMDA receptor. To test this hypothesis, we measured the effect of IV infusion of the NMDA blockers dizocilpine (MK-801) and (R)-4-(3-phosphonopropyl) piperazine-2-carboxylic acid (CPP) to decrease the MAC (the minimum alveolar concentration of anesthetic that prevents movement in 50% of subjects given a noxious stimulation) of 8 conventional anesthetics (cyclopropane, desflurane, enflurane, halothane, isoflurane, nitrous oxide, sevoflurane, and xenon) and 8 aromatic compounds (benzene, fluorobenzene, o-difluorobenzene, p-difluorobenzene, 1,2,4-trifluorobenzene, 1,3,5-trifluorobenzene, pentafluorobenzene, and hexafluorobenzene) and, for comparison, etomidate. We postulated that MK-801 or CPP infusions would decrease MAC in inverse proportion to the in vitro capacity of these anesthetics to block the NMDA receptor. This notion proved correct for the aromatic inhaled anesthetics, but not for the conventional anesthetics. At the greatest infusion of MK-801 (32 microg x kg(-1) x min(-1)) the MACs of conventional anesthetics decreased by 59.4 +/- 3.4% (mean +/- sd) and at 8 microg x kg(-1) x min(-1) by 45.5 +/- 4.2%, a decrease not significantly different from a 51.4 +/- 19.0% decrease produced in the EC50 for etomidate, an anesthetic that acts solely by enhancing gamma-amino butyric acid (GABA) receptors. We conclude that some aromatic anesthetics may produce immobility in the face of noxious stimulation by blocking the action of glutamate on NMDA receptors but that conventional inhaled anesthetics do not.

Details

ISSN :
00032999
Volume :
102
Database :
OpenAIRE
Journal :
Anesthesia & Analgesia
Accession number :
edsair.doi.dedup.....0cb300b14030604090ade8e75f2d705c
Full Text :
https://doi.org/10.1213/01.ane.0000219019.91281.51