Back to Search Start Over

Neural approximations of analog joint source-channel coding

Authors :
Maurizio Mongelli
Franco Davoli
Source :
IEEE signal processing letters 22 (2015): 421–425. doi:10.1109/LSP.2014.2361402, info:cnr-pdr/source/autori:Davoli, Franco; Mongelli, Maurizio/titolo:Neural Approximations of Analog Joint Source-Channel Coding/doi:10.1109%2FLSP.2014.2361402/rivista:IEEE signal processing letters/anno:2015/pagina_da:421/pagina_a:425/intervallo_pagine:421–425/volume:22
Publication Year :
2015
Publisher :
IEEE, 2015.

Abstract

An estimation setting is considered, where a number of sensors transmit their observations of a physical phenomenon, described by one or more random variables, to a sink over noisy communication channels. The goal is to minimize a quadratic distortion measure (Minimum Mean Square Error - MMSE) under a global power constraint on the sensors’ transmissions. Linear MMSE encoders and decoders, parametrically optimized in encoders’ gains, Shannon–Kotel’nikov mappings, and nonlinear parametric functional approximators (neural networks) are investigated and numerically compared, highlighting subtle differences in sensitivity and achievable performance.

Details

Language :
English
Database :
OpenAIRE
Journal :
IEEE signal processing letters 22 (2015): 421–425. doi:10.1109/LSP.2014.2361402, info:cnr-pdr/source/autori:Davoli, Franco; Mongelli, Maurizio/titolo:Neural Approximations of Analog Joint Source-Channel Coding/doi:10.1109%2FLSP.2014.2361402/rivista:IEEE signal processing letters/anno:2015/pagina_da:421/pagina_a:425/intervallo_pagine:421–425/volume:22
Accession number :
edsair.doi.dedup.....0cda01a985d6464e54bea5b40d3e7ced
Full Text :
https://doi.org/10.1109/LSP.2014.2361402