Back to Search Start Over

Population Genetics Study of Isoniazid Resistance Mutations and Evolution of Multidrug-Resistant Mycobacterium tuberculosis†

Authors :
Magali Cavatore
M. Donald Cave
Lourdes García-García
Kathleen D. Eisenach
Miriam Bobadilla-del Valle
Clara Inés León
Manzour Hernando Hazbón
Alfredo Ponce de León
Janet A. M. Fyfe
Fernando Chaves
Michael Brimacombe
Marta Inírida Guerrero
Helen Billman-Jacobe
Caroline J. Lavender
Mridula Bose
José Sifuentes-Osornio
Mandira Varma-Basil
Megan Murray
David Alland
Source :
Repositorio EdocUR-U. Rosario, Universidad del Rosario, instacron:Universidad del Rosario
Publication Year :
2006
Publisher :
American Society for Microbiology, 2006.

Abstract

The molecular basis for isoniazid resistance in Mycobacterium tuberculosis is complex. Putative isoniazid resistance mutations have been identified in katG , ahpC , inhA , kasA , and ndh . However, small sample sizes and related potential biases in sample selection have precluded the development of statistically valid and significant population genetic analyses of clinical isoniazid resistance. We present the first large-scale analysis of 240 alleles previously associated with isoniazid resistance in a diverse set of 608 isoniazid-susceptible and 403 isoniazid-resistant clinical M. tuberculosis isolates. We detected 12 mutant alleles in isoniazid-susceptible isolates, suggesting that these alleles are not involved in isoniazid resistance. However, mutations in katG , ahpC , and inhA were strongly associated with isoniazid resistance, while kasA mutations were associated with isoniazid susceptibility. Remarkably, the distribution of isoniazid resistance-associated mutations was different in isoniazid-monoresistant isolates from that in multidrug-resistant isolates, with significantly fewer isoniazid resistance mutations in the isoniazid-monoresistant group. Mutations in katG 315 were significantly more common in the multidrug-resistant isolates. Conversely, mutations in the inhA promoter were significantly more common in isoniazid-monoresistant isolates. We tested for interactions among mutations and resistance to different drugs. Mutations in katG , ahpC , and inhA were associated with rifampin resistance, but only katG 315 mutations were associated with ethambutol resistance. There was also a significant inverse association between katG 315 mutations and mutations in ahpC or inhA and between mutations in kasA and mutations in ahpC . Our results suggest that isoniazid resistance and the evolution of multidrug-resistant strains are complex dynamic processes that may be influenced by interactions between genes and drug-resistant phenotypes.

Details

Language :
English
Database :
OpenAIRE
Journal :
Repositorio EdocUR-U. Rosario, Universidad del Rosario, instacron:Universidad del Rosario
Accession number :
edsair.doi.dedup.....0d1fedcf2917bfc0a706c8298a21735d