Back to Search Start Over

Computational helioseismology in the frequency domain: acoustic waves in axisymmetric solar models with flows

Authors :
Damien Fournier
Juliette Chabassier
Hélène Barucq
Marc Duruflé
Aaron C. Birch
Laurent Gizon
Thorsten Hohage
Chris S. Hanson
Emanuele Papini
Michael Leguèbe
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS)
Max-Planck-Gesellschaft
Advanced 3D Numerical Modeling in Geophysics (Magique 3D)
Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP)
Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)-Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)
Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Georg-August-University = Georg-August-Universität Göttingen
Max-Planck-Institut für Sonnensystemforschung (MPS)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Georg-August-University [Göttingen]
Source :
Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, 2017, 600, pp.A35. ⟨10.1051/0004-6361/201629470⟩, Astronomy and Astrophysics-A&A, EDP Sciences, 2017, 600, pp.A35. ⟨10.1051/0004-6361/201629470⟩
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

Local helioseismology has so far relied on semi-analytical methods to compute the spatial sensitivity of wave travel times to perturbations in the solar interior. These methods are cumbersome and lack flexibility. Here we propose a convenient framework for numerically solving the forward problem of time-distance helioseismology in the frequency domain. The fundamental quantity to be computed is the cross-covariance of the seismic wavefield. We choose sources of wave excitation that enable us to relate the cross-covariance of the oscillations to the Green's function in a straightforward manner. We illustrate the method by considering the 3D acoustic wave equation in an axisymmetric reference solar model, ignoring the effects of gravity on the waves. The symmetry of the background model around the rotation axis implies that the Green's function can be written as a sum of longitudinal Fourier modes, leading to a set of independent 2D problems. We use a high-order finite-element method to solve the 2D wave equation in frequency space. The computation is `embarrassingly parallel', with each frequency and each azimuthal order solved independently on a computer cluster. We compute travel-time sensitivity kernels in spherical geometry for flows, sound speed, and density perturbations under the first Born approximation. Convergence tests show that travel times can be computed with a numerical precision better than one millisecond, as required by the most precise travel-time measurements. The method presented here is computationally efficient and will be used to interpret travel-time measurements in order to infer, e.g., the large-scale meridional flow in the solar convection zone. It allows the implementation of (full-waveform) iterative inversions, whereby the axisymmetric background model is updated at each iteration.<br />Comment: Accepted on 3 Nov 2016 for publication in Astronomy and Astrophysics

Details

Language :
English
ISSN :
00046361
Database :
OpenAIRE
Journal :
Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, 2017, 600, pp.A35. ⟨10.1051/0004-6361/201629470⟩, Astronomy and Astrophysics-A&A, EDP Sciences, 2017, 600, pp.A35. ⟨10.1051/0004-6361/201629470⟩
Accession number :
edsair.doi.dedup.....0da458f48a7ef011b8aa6e3eea89c667
Full Text :
https://doi.org/10.1051/0004-6361/201629470⟩