Back to Search Start Over

Learning Connective-based Word Representations for Implicit Discourse Relation Identification

Authors :
Chloé Braud
Pascal Denis
Department of Computer Science [Copenhagen] (DIKU)
Faculty of Science [Copenhagen]
University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU)
Machine Learning in Information Networks (MAGNET)
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)
Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Source :
Empirical Methods on Natural Language Processing, Empirical Methods on Natural Language Processing, Nov 2016, Austin, United States, EMNLP, University of Copenhagen, HAL
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

International audience; We introduce a simple semi-supervised approach to improve implicitdiscourse relation identification. This approach harnesses largeamounts of automatically extracted discourse connectives along withtheir arguments to construct new distributional wordrepresentations. Specifically, we represent words in the space ofdiscourse connectives as a way to directly encode their rhetoricalfunction. Experiments on the Penn Discourse Treebank demonstrate theeffectiveness of these task-tailored representations in predictingimplicit discourse relations. Our results indeed show that, despitetheir simplicity, these connective-based representations outperformvarious off-the-shelf word embeddings, and achieve state-of-the-artperformance on this problem.

Details

Language :
English
Database :
OpenAIRE
Journal :
Empirical Methods on Natural Language Processing, Empirical Methods on Natural Language Processing, Nov 2016, Austin, United States, EMNLP, University of Copenhagen, HAL
Accession number :
edsair.doi.dedup.....0e06cbb022adf56524e71d423326320e