Back to Search Start Over

Salt coatings functionalize inert membranes into high-performing filters against infectious respiratory diseases

Authors :
Surjith Kumar Kumaran
Su Hwa Lee
Hyo-Jick Choi
Dong-Hun Lee
Ilaria Rubino
Chun Il Kim
Hae Ji Kang
Euna Oh
Sana Kaleem
Sarah Armstrong
Ki Back Chu
Byeonghwa Jeon
Fu-Shi Quan
Alex Hornig
Shivanjali Choudhry
Sumin Han
Romani Lalani
Source :
Scientific Reports, Scientific Reports, Vol 10, Iss 1, Pp 1-10 (2020)
Publication Year :
2020

Abstract

Respiratory protection is key in infection prevention of airborne diseases, as highlighted by the COVID-19 pandemic for instance. Conventional technologies have several drawbacks (i.e., cross-infection risk, filtration efficiency improvements limited by difficulty in breathing, and no safe reusability), which have yet to be addressed in a single device. Here, we report the development of a filter overcoming the major technical challenges of respiratory protective devices. Large-pore membranes, offering high breathability but low bacteria capture, were functionalized to have a uniform salt layer on the fibers. The salt-functionalized membranes achieved high filtration efficiency as opposed to the bare membrane, with differences of up to 48%, while maintaining high breathability (> 60% increase compared to commercial surgical masks even for the thickest salt filters tested). The salt-functionalized filters quickly killed Gram-positive and Gram-negative bacteria aerosols in vitro, with CFU reductions observed as early as within 5 min, and in vivo by causing structural damage due to salt recrystallization. The salt coatings retained the pathogen inactivation capability at harsh environmental conditions (37 °C and a relative humidity of 70%, 80% and 90%). Combination of these properties in one filter will lead to the production of an effective device, comprehensibly mitigating infection transmission globally.

Details

ISSN :
20452322
Volume :
10
Issue :
1
Database :
OpenAIRE
Journal :
Scientific reports
Accession number :
edsair.doi.dedup.....0e79bf46d5f6ceee54022575297d6736