Back to Search
Start Over
Investigation of longitudinal proton acceleration in exploded targets irradiated by intense short-pulse laser
- Source :
- Physics of Plasmas, Physics of Plasmas, 2014, 21 (1), pp.013102. ⟨10.1063/1.4853475⟩, Physics of Plasmas, American Institute of Physics, 2014, 21 (1), pp.013102. ⟨10.1063/1.4853475⟩
- Publication Year :
- 2014
- Publisher :
- HAL CCSD, 2014.
-
Abstract
- International audience; It was recently shown that a promising way to accelerate protons in the forward direction to high energies is to use under-dense or near-critical density targets instead of solids. Simulations have revealed that the acceleration process depends on the density gradients of the plasma target. Indeed, under certain conditions, the most energetic protons are predicted to be accelerated by a collisionless shock mechanism that significantly increases their energy. We report here the results of a recent experiment dedicated to the study of longitudinal ion acceleration in partially exploded foils using a high intensity (similar to 5 x 10(18) W/cm(2)) picosecond laser pulse. We show that protons accelerated using targets having moderate front and rear plasma gradients (up to similar to 8 mu m gradient length) exhibit similar maximum proton energy and number compared to proton beams that are produced, in similar laser conditions, from solid targets, in the well-known target normal sheath acceleration regime. Particle-In-Cell simulations, performed in the same conditions as the experiment and consistent with the measurements, allow laying a path for further improvement of this acceleration scheme. (C) 2014 AIP Publishing LLC.
- Subjects :
- Physics
Proton
Plasma
Condensed Matter Physics
Laser
7. Clean energy
01 natural sciences
010305 fluids & plasmas
Intensity (physics)
law.invention
Shock (mechanics)
Acceleration
law
Physics::Plasma Physics
0103 physical sciences
Physics::Accelerator Physics
Plasma diagnostics
Irradiation
Atomic physics
[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]
010306 general physics
Subjects
Details
- Language :
- English
- ISSN :
- 1070664X and 10897674
- Database :
- OpenAIRE
- Journal :
- Physics of Plasmas, Physics of Plasmas, 2014, 21 (1), pp.013102. ⟨10.1063/1.4853475⟩, Physics of Plasmas, American Institute of Physics, 2014, 21 (1), pp.013102. ⟨10.1063/1.4853475⟩
- Accession number :
- edsair.doi.dedup.....0e7fa12b41ba746929f338350ec25648