Back to Search Start Over

Real-Time Tone Mapping : A Survey and Cross-Implementation Hardware Benchmark

Authors :
Masayuki Ikebe
Tetsuya Asai
Yafei Ou
Prasoon Ambalathankandy
Shinya Takamaeda
Masato Motomura
Source :
IEEE transactions on circuits and systems for video technology. 32(5):2666-2686
Publication Year :
2022
Publisher :
IEEE (Institute of Electrical and Electronics Engineers), 2022.

Abstract

The rising demand for high quality display has ensued active research in high dynamic range (HDR) imaging, which has the potential to replace the standard dynamic range imaging. This is due to HDR’s features like accurate reproducibility of a scene with its entire spectrum of visible lighting and color depth. But this capability comes with expensive capture, display, storage and distribution resource requirements. Also, display of HDR images/video content on an ordinary display device with limited dynamic range requires some form of adaptation. Many adaptation algorithms, widely known as tone mapping (TM) operators, have been studied and proposed in the last few decades. In this paper, we present a comprehensive survey of 60 TM algorithms that have been implemented on hardware for acceleration and real-time performance. In this state-of-the-art survey, we will discuss those TM algorithms which have been implemented on GPU [1]–[12], FPGA [13]–[47], and ASIC [48]–[60] in terms of their hardware specifications and performance. Output image quality is an important metric for TM algorithms. From our literature survey we found that, various objective quality metrics have been used to demonstrate the quality of those algorithms hardware implementation. We have compiled those metrics used in this survey [61], [62], and analyzed the relationship between hardware cost, image quality and computational efficiency. Currently, machine learning-based (ML) algorithms have become an important tool to solve many image processing tasks, and this paper concludes with a discussion on the future research directions to realize ML-based TM operators on hardware.

Details

Language :
English
ISSN :
10518215
Volume :
32
Issue :
5
Database :
OpenAIRE
Journal :
IEEE transactions on circuits and systems for video technology
Accession number :
edsair.doi.dedup.....0eb4a6a4771bf138ae7d9c8eda892044