Back to Search Start Over

Thermodynamic analysis of carbon dioxide hydrogenation to formic acid and methanol

Authors :
Cláudio Augusto Oller do Nascimento
Antonio E. Bresciani
Taofeeq Oladayo Bello
Rita M.B. Alves
Source :
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
Publication Year :
2021

Abstract

Direct hydrogenation of carbon dioxide (CO2) to formic acid is unfavorable thermodynamically, which makes its production limited. In this study, a thermodynamic analysis of CO2 hydrogenation to binary product systems of methanol and formic acid promoted by ionic liquid (IL) (1-ethyl-2,3-dimethylimidazolium nitrite, ([Edmim][NO2]) is presented. The analysis is conducted in Aspen Plus using the Gibbs energy minimization approach combined with a vapor–liquid equilibrium (VLE) for the solvation of CO2 in IL. It is demonstrated that solvating CO2 in ILs is an attractive alternative to overcome the thermodynamic difficulty associated with the product yield, especially formic acid. The [Edmim][NO2] promoted system is very effective for the simultaneous production of formic acid and methanol at 25 °C and 17 bar with a yield of 35% formic acid and 30% methanol at a CO2/H2/IL ratio of 1/2/2. The results show a marked improvement in the yield of formic acid to other previously conducted studies on formic acid production.

Details

Database :
OpenAIRE
Journal :
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
Accession number :
edsair.doi.dedup.....0ebd98e7de032267335527134b77e749