Back to Search Start Over

Upward transport of bottom-ice dimethyl sulfide during advanced melting of arctic first-year sea ice

Authors :
Gourdal, Margaux
Crabeck, Odile
Lizotte, Martine
Galindo, Virginie
Gosselin, Michel
Babin, Marcel
Scarratt, Michael
Levasseur, Maurice
Deming, Jody
Arrigo, Kevin
Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)
Université Laval [Québec] (ULaval)
University of Manitoba [Winnipeg]
Institut des Sciences de la MER de Rimouski (ISMER)
Université du Québec à Rimouski (UQAR)
Takuvik Joint International Laboratory ULAVAL-CNRS
Université Laval [Québec] (ULaval)-Centre National de la Recherche Scientifique (CNRS)
School of Oceanography [Seattle]
University of Washington [Seattle]
Department of Earth System Science [Stanford] (ESS)
Stanford EARTH
Stanford University-Stanford University
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
Université Laval [Québec] (ULaval)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Source :
Elementa: Science of the Anthropocene, Vol 7, Iss 1 (2019), Elementa: Science of the Anthropocene, Elementa: Science of the Anthropocene, University of California Press, 2019, 7, ⟨10.1525/elementa.370⟩, Elem Sci Anth; Vol 7 (2019); 33, Elementa: Science of the Anthropocene, 2019, 7, ⟨10.1525/elementa.370⟩
Publication Year :
2019
Publisher :
BioOne, 2019.

Abstract

This paper presents the first empirical estimates of dimethyl sulfide (DMS) gas fluxes across permeable sea ice in the Arctic. DMS is known to act as a major potential source of aerosols that strongly influence the Earth’s radiative balance in remote marine regions during the ice-free season. Results from a sampling campaign, undertaken in 2015 between June 2 and June 28 in the ice-covered Western Baffin Bay, revealed the presence of high algal biomass in the bottom 0.1-m section of sea ice (21 to 380 µg Chl a L–1) combined with the presence of high DMS concentrations (212–840 nmol L–1). While ice algae acted as local sources of DMS in bottom sea ice, thermohaline changes within the brine network, from gravity drainage to vertical stabilization, exerted strong control on the distribution of DMS within the interior of the ice. We estimated both the mean DMS molecular diffusion coefficient in brine (5.2 × 10–5 cm2 s–1 ± 51% relative S.D., n = 10) and the mean bulk transport coefficient within sea ice (33 × 10–5 cm2 s–1 ± 41% relative S.D., n = 10). The estimated DMS fluxes ± S.D. from the bottom ice to the atmosphere ranged between 0.47 ± 0.08 µmol m–2 d–1 (n = 5, diffusion) and 0.40 ± 0.15 µmol m–2 d–1 (n = 5, bulk transport) during the vertically stable phase. These fluxes fall within the lower range of direct summer sea-to-air DMS fluxes reported in the Arctic. Our results indicate that upward transport of DMS, from the algal-rich bottom of first-year sea ice through the permeable sea ice, may represent an important pathway for this biogenic gas toward the atmosphere in ice-covered oceans in spring and summer.

Details

Language :
English
ISSN :
23251026
Volume :
7
Issue :
1
Database :
OpenAIRE
Journal :
Elementa: Science of the Anthropocene
Accession number :
edsair.doi.dedup.....0f1c01d9898293b7a333f1ebfa3bdc7c
Full Text :
https://doi.org/10.1525/elementa.370⟩