Back to Search
Start Over
Lysine acetylation regulates the interaction between proteins and membranes
- Source :
- Nature Communications, Vol 12, Iss 1, Pp 1-12 (2021), Nature Communications
- Publication Year :
- 2021
- Publisher :
- Nature Portfolio, 2021.
-
Abstract
- Lysine acetylation regulates the function of soluble proteins in vivo, yet it remains largely unexplored whether lysine acetylation regulates membrane protein function. Here, we use bioinformatics, biophysical analysis of recombinant proteins, live-cell fluorescent imaging and genetic manipulation of Drosophila to explore lysine acetylation in peripheral membrane proteins. Analysis of 50 peripheral membrane proteins harboring BAR, PX, C2, or EHD membrane-binding domains reveals that lysine acetylation predominates in membrane-interaction regions. Acetylation and acetylation-mimicking mutations in three test proteins, amphiphysin, EHD2, and synaptotagmin1, strongly reduce membrane binding affinity, attenuate membrane remodeling in vitro and alter subcellular localization. This effect is likely due to the loss of positive charge, which weakens interactions with negatively charged membranes. In Drosophila, acetylation-mimicking mutations of amphiphysin cause severe disruption of T-tubule organization and yield a flightless phenotype. Our data provide mechanistic insights into how lysine acetylation regulates membrane protein function, potentially impacting a plethora of membrane-related processes.<br />Lysine acetylation regulates the function of soluble proteins in vivo, yet it remains largely unexplored whether lysine acetylation regulates the function of membrane proteins. Here, the authors map lysine acetylation predominantly in membrane-interaction regions in peripheral membrane proteins and show with three candidate proteins how lysine acetylation is a regulator of membrane protein function.
- Subjects :
- Cancer Research
Science
Lysine
General Physics and Astronomy
Nerve Tissue Proteins
Membrane curvature
complex mixtures
Article
General Biochemistry, Genetics and Molecular Biology
Membrane biophysics
Computational biophysics
Animals
Membrane lipids
Multidisciplinary
Chemistry
Peripheral membrane protein
Acetylation
General Chemistry
Subcellular localization
Cell biology
Membrane
Membrane protein
Mutation
Amphiphysin
bacteria
Drosophila
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
Function (biology)
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 12
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Nature Communications
- Accession number :
- edsair.doi.dedup.....0f247f0d56d38fe5745b3672e36f114f