Back to Search Start Over

Structures of mammalian GLD-2 proteins reveal molecular basis of their functional diversity in mRNA and microRNA processing

Authors :
Bing Yu
Jian-Xiong Feng
Li Luo
Xiao-Yan Ma
Song Gao
Jichang Wang
Hong Zhang
Jia-Li Hu
Shuang Liao
Yu-Lu Cao
Source :
Nucleic Acids Research
Publication Year :
2020
Publisher :
Oxford University Press (OUP), 2020.

Abstract

The stability and processing of cellular RNA transcripts are efficiently controlled via non-templated addition of single or multiple nucleotides, which is catalyzed by various nucleotidyltransferases including poly(A) polymerases (PAPs). Germline development defective 2 (GLD-2) is among the first reported cytoplasmic non-canonical PAPs that promotes the translation of germline-specific mRNAs by extending their short poly(A) tails in metazoan, such as Caenorhabditis elegans and Xenopus. On the other hand, the function of mammalian GLD-2 seems more diverse, which includes monoadenylation of certain microRNAs. To understand the structural basis that underlies the difference between mammalian and non-mammalian GLD-2 proteins, we determine crystal structures of two rodent GLD-2s. Different from C. elegans GLD-2, mammalian GLD-2 is an intrinsically robust PAP with an extensively positively charged surface. Rodent and C. elegans GLD-2s have a topological difference in the β-sheet region of the central domain. Whereas C. elegans GLD-2 prefers adenosine-rich RNA substrates, mammalian GLD-2 can work on RNA oligos with various sequences. Coincident with its activity on microRNAs, mammalian GLD-2 structurally resembles the mRNA and miRNA processor terminal uridylyltransferase 7 (TUT7). Our study reveals how GLD-2 structurally evolves to a more versatile nucleotidyltransferase, and provides important clues in understanding its biological function in mammals.

Details

ISSN :
13624962 and 03051048
Volume :
48
Database :
OpenAIRE
Journal :
Nucleic Acids Research
Accession number :
edsair.doi.dedup.....0f86201d1d1b6d0eb249479338c2e8f1
Full Text :
https://doi.org/10.1093/nar/gkaa578