Back to Search Start Over

Overexpression of pEGF improved the gut protective function of Clostridium butyricum partly through STAT3 signal pathway

Authors :
Weihong Qiu
Linghua Zhang
Guanhua Gan
Ding Cao
Feiping Ming
Zengjue Zhao
Jinbo Deng
Junhao Jia
Qianyi Liang
Miaopeng Ma
Rongxiao He
Hejia Ye
Chongjun Sun
Saixiang Feng
Zhiyang Chen
Haokun Shen
Zitong Zhao
Jiayi Li
Source :
Applied Microbiology and Biotechnology. 105:5973-5991
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

Clostridium butyricum (C. butyricum) is a probiotic that could promote animal growth and protect gut health. So far, current studies mainly keep up with the basic biological functions of C. butyricum, missing the effective strategy to further improve its protective efficiency. A recent report about C. butyricum alleviating intestinal injury through epidermal growth factor receptor (EGFR) inspired us to bridge this gap by porcine epidermal growth factor (EGF) overexpression. Lacking a secretory overexpression system, we constructed the recombinant strains overexpressing pEGF in C. butyricum for the first time and obtained 4 recombinant strains for highly efficient secretion of pEGF (BC/pPD1, BC/pSPP, BC/pGHF, and BC/pDBD). Compared to the wild-type strain, we confirmed that the expression level ranges of the intestinal development-related genes (Claudin-1, GLUT-2, SUC, GLP2R, and EGFR) and anti-inflammation-related gene (IL-10) in IPECs were upregulated under recombinant strain stimulation, and the growth of Staphylococcus aureus and Salmonella typhimurium was significantly inhibited as well. Furthermore, a particular inhibitor (stattic) was used to block STAT3 tyrosine phosphorylation, resulting in the downregulation on antibacterial effect of recombinant strains. This study demonstrated that the secretory overexpression of pEGF in C. butyricum could upregulate the expression level of EGFR, consequently improving the intestinal protective functions of C. butyricum partly following STAT3 signal activation in IPECs and making it a positive loop. These findings on the overexpression strains pointed out a new direction for further development and utilization of C. butyricum. KEY POINTS: • By 12 signal peptide screening in silico, 4 pEGF overexpression strains of C. butyricum/pMTL82151-pEGF for highly efficient secretion of pEGF were generated for the first time. • The secretory overexpression of pEGF promoted the intestinal development, antimicrobial action, and anti-inflammatory function of C. butyricum. • The overexpressed pEGF upregulated the expression level of EGFR and further magnified the gut protective function of recombinant strains which in turn partly depended on STAT3 signal pathway in IPECs.

Details

ISSN :
14320614 and 01757598
Volume :
105
Database :
OpenAIRE
Journal :
Applied Microbiology and Biotechnology
Accession number :
edsair.doi.dedup.....0fb557a15528cd52ccc52eb572ca804e
Full Text :
https://doi.org/10.1007/s00253-021-11472-y