Back to Search Start Over

Anaphase asymmetry and dynamic repositioning of the division plane during maize meiosis

Authors :
Natalie J. Nannas
R. Kelly Dawe
David M. Higgins
Source :
Journal of Cell Science.
Publication Year :
2016
Publisher :
The Company of Biologists, 2016.

Abstract

The success of an organism is contingent upon its ability to transmit genetic material through meiotic cell division. In plant meiosis I, the process begins in a large spherical cell without physical cues to guide the process. Yet, two microtubule-based structures, the spindle and phragmoplast, divide the chromosomes and the cell with extraordinary accuracy. Using a live-cell system and fluorescently labeled spindles and chromosomes, we found that the process self- corrects as meiosis proceeds. Metaphase spindles frequently initiate division off-center, and in these cases anaphase progression is asymmetric with the two masses of chromosomes traveling unequal distances on the spindle. The asymmetry is compensatory, such that the chromosomes on the side of the spindle that is farthest from the cell cortex travel a longer distance at a faster rate. The phragmoplast forms at an equidistant point between the telophase nuclei rather than at the original spindle mid-zone. This asymmetry in chromosome movement implies a structural difference between the two halves of a bipolar spindle and could allow meiotic cells to dynamically adapt to errors in metaphase and accurately divide the cell volume.

Details

ISSN :
14779137 and 00219533
Database :
OpenAIRE
Journal :
Journal of Cell Science
Accession number :
edsair.doi.dedup.....0fb5d1e301450073b450f97c2a61cb9b
Full Text :
https://doi.org/10.1242/jcs.194860