Back to Search Start Over

Long-time homogenization and asymptotic ballistic transport of classical waves

Authors :
Antoine Benoit
Antoine Gloria
Université du Littoral Côte d'Opale (ULCO)
Laboratoire Jacques-Louis Lions (LJLL)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Département de Mathématique [Bruxelles] (ULB)
Faculté des Sciences [Bruxelles] (ULB)
Université libre de Bruxelles (ULB)-Université libre de Bruxelles (ULB)
European Project: 335410,EC:FP7:ERC,ERC-2013-StG,QUANTHOM(2014)
Source :
Annales Scientifiques de l'Ecole Normale Supérieure, 1 (52, Annales Scientifiques de l'École Normale Supérieure, Annales Scientifiques de l'École Normale Supérieure, Société mathématique de France, In press, Annales Scientifiques de l'École Normale Supérieure, 2019, 52 (3), pp.703-759. ⟨10.24033/asens.2395⟩
Publication Year :
2017
Publisher :
arXiv, 2017.

Abstract

Consider an elliptic operator in divergence form with symmetric coefficients.If the diffusion coefficients are periodic, the Bloch theorem allows one to diagonalize the elliptic operator, which is key to the spectral properties of the elliptic operator and the usual starting point for the study of its long-time homogenization.When the coefficients are not periodic (say, quasi-periodic, almost periodic, or random with decaying correlations at infinity), the Bloch theorem does not hold and both the spectral properties and the long-time behavior of the associatedoperator are unclear.At low frequencies, we may however consider a formal Taylor expansion of Bloch waves (whether they exist or not) based on correctors in elliptic homogenization.The associated Taylor-Bloch waves diagonalize the elliptic operator up to an error term (an "eigendefect"), which we express with the help of a new family of extended correctors.We use the Taylor-Bloch waves with eigendefects to quantify the transport properties and homogenization error over large timesfor the wave equation in terms of the spatial growth of these extended correctors.On the one hand, this quantifies the validity of homogenization over large times (both for the standard homogenized equation and higher-order versions).On the other hand, this allows us to prove asymptotic ballistic transport of classical waves at low energies for almost periodic and random operators.<br />Comment: Annales Scientifiques de l'{\'E}cole Normale Sup{\'e}rieure, Elsevier Masson, In press

Details

ISSN :
00129593 and 18732151
Database :
OpenAIRE
Journal :
Annales Scientifiques de l'Ecole Normale Supérieure, 1 (52, Annales Scientifiques de l'École Normale Supérieure, Annales Scientifiques de l'École Normale Supérieure, Société mathématique de France, In press, Annales Scientifiques de l'École Normale Supérieure, 2019, 52 (3), pp.703-759. ⟨10.24033/asens.2395⟩
Accession number :
edsair.doi.dedup.....0fbb5926dad14757fd63bea3570aecaa
Full Text :
https://doi.org/10.48550/arxiv.1701.08600