Back to Search
Start Over
Long-time homogenization and asymptotic ballistic transport of classical waves
- Source :
- Annales Scientifiques de l'Ecole Normale Supérieure, 1 (52, Annales Scientifiques de l'École Normale Supérieure, Annales Scientifiques de l'École Normale Supérieure, Société mathématique de France, In press, Annales Scientifiques de l'École Normale Supérieure, 2019, 52 (3), pp.703-759. ⟨10.24033/asens.2395⟩
- Publication Year :
- 2017
- Publisher :
- arXiv, 2017.
-
Abstract
- Consider an elliptic operator in divergence form with symmetric coefficients.If the diffusion coefficients are periodic, the Bloch theorem allows one to diagonalize the elliptic operator, which is key to the spectral properties of the elliptic operator and the usual starting point for the study of its long-time homogenization.When the coefficients are not periodic (say, quasi-periodic, almost periodic, or random with decaying correlations at infinity), the Bloch theorem does not hold and both the spectral properties and the long-time behavior of the associatedoperator are unclear.At low frequencies, we may however consider a formal Taylor expansion of Bloch waves (whether they exist or not) based on correctors in elliptic homogenization.The associated Taylor-Bloch waves diagonalize the elliptic operator up to an error term (an "eigendefect"), which we express with the help of a new family of extended correctors.We use the Taylor-Bloch waves with eigendefects to quantify the transport properties and homogenization error over large timesfor the wave equation in terms of the spatial growth of these extended correctors.On the one hand, this quantifies the validity of homogenization over large times (both for the standard homogenized equation and higher-order versions).On the other hand, this allows us to prove asymptotic ballistic transport of classical waves at low energies for almost periodic and random operators.<br />Comment: Annales Scientifiques de l'{\'E}cole Normale Sup{\'e}rieure, Elsevier Masson, In press
- Subjects :
- long-time
74Q15
General Mathematics
homogenization
presque périodique
ballistic transport Mots-clés : homogénéisation
01 natural sciences
Homogenization (chemistry)
35L05
symbols.namesake
Operator (computer programming)
Mathematics - Analysis of PDEs
Ballistic conduction
Taylor series
ondes
35R60
FOS: Mathematics
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
waves
0101 mathematics
quasiperiodic
35P05
Physics
010102 general mathematics
Mathematical analysis
random
Probability (math.PR)
temps long
periodic
Wave equation
010101 applied mathematics
périodique
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
Elliptic operator
transport balistique Mathematics Subject Classification: 35B27
Quasiperiodic function
symbols
quasi-periodic
wave equation
aléatoire
Analyse mathématique
Mathematics - Probability
Bloch wave
Analysis of PDEs (math.AP)
Subjects
Details
- ISSN :
- 00129593 and 18732151
- Database :
- OpenAIRE
- Journal :
- Annales Scientifiques de l'Ecole Normale Supérieure, 1 (52, Annales Scientifiques de l'École Normale Supérieure, Annales Scientifiques de l'École Normale Supérieure, Société mathématique de France, In press, Annales Scientifiques de l'École Normale Supérieure, 2019, 52 (3), pp.703-759. ⟨10.24033/asens.2395⟩
- Accession number :
- edsair.doi.dedup.....0fbb5926dad14757fd63bea3570aecaa
- Full Text :
- https://doi.org/10.48550/arxiv.1701.08600