Back to Search Start Over

Concerted motion of structure and active site charge is required for tyrosine aminotransferase activity in Leishmania parasite

Authors :
Prakash Saudagar
Santanu Sasidharan
Source :
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 232:118133
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

Leishmania donovani tyrosine aminotransferase (LdTAT) is an essential enzyme that catalyzes the first step of amino acid catabolism. To understand LdTAT activity at different pH, molecular dynamics simulations were performed and trajectory and T-pad analysis pad were conducted. Fluorescence spectroscopy of LdTAT at various pH was measured to understand structural stability. UV studies on PLP were performed to determine the binding of the enzyme to cofactor PLP at different pH. The MD simulations showed that the structure of LdTAT was stable and no structural denaturation was observed at pH 2, 7 and 12. LdTAT exhibited the highest activity at pH -8 and fluorescent spectroscopy also corroborated by exhibiting the highest intensity at pH -8. Moreover, no structural denaturation was observed during the pH gradient. UV studies concluded that the aldimine bond forms only around neutral pH and redshift was observed on enzyme binding. From our observation, we hypothesize that the activity of LdTAT is a close interplay between the structure and charges of K286 and PLP. This study may provide significant insight into understanding parasitic enzymes like LdTAT during the life-cycle of Leishmania parasite. Knowledge of such enzyme mechanisms can pave the way for the design and delivery of enzyme-specific inhibitors.

Details

ISSN :
13861425
Volume :
232
Database :
OpenAIRE
Journal :
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Accession number :
edsair.doi.dedup.....10478025e9e9ea141e8e83206fd29fac