Back to Search Start Over

NUDT21 inhibits bladder cancer progression through ANXA2 and LIMK2 by alternative polyadenylation

Authors :
Yong Ding
Liang Chen
Teng Hou
Gallina Kazobinka
Ming Xiong
Zhaohui Chen
Lijie Zhou
Source :
Theranostics
Publication Year :
2019
Publisher :
Ivyspring International Publisher, 2019.

Abstract

Purpose: Nudix Hydrolase 21 (NUDT21) is a crucial mediator involved in alternative polyadenylation (APA), and this molecule has been reported to be a tumor suppressor in human cancers. However, neither the role NUDT21 plays in bladder cancer (BC) nor the mechanisms which are involved have been investigated. Methods: Expression levels of NUDT21 in BC were evaluated with real-time PCR, western blotting, and immunohistochemistry (IHC). In vitro and in vivo assays were performed to investigate the function of NUDT21 in tumorigenesis in bladder cancer cells. The TOP/FOP flash reporter assay, western blot, and global APA site profiling analysis were used to identify the pathway which mediates the biologic roles of NUDT21 in BC. Results: NUDT21 expression is reduced in BC tissue and cells, and BC patients with lower NUDT21 expression have shorter overall and recurrent-free survival than patients with higher NUDT21 expression. NUDT21 ectopic expression or knockdown respectively profoundly inhibited or promoted the capacity of BC cells for proliferation, migration and invasion. We also identified a number of genes with shortened 3'UTRs through modulation of NUDT21 expression, and further characterized the NUDT21-regulated genes ANXA2 and LIMK2. We found NUDT21 modulates the expression of ANXA2 and LIMK2 in the Wnt/β-catenin and NF-κB signaling pathways. Conclusions: These findings show NUDT21 plays a crucial role in BC progression, at least in part through ANXA2 and LIMK2 which act by alternative polyadenylation. NUDT21 may thus have potential as a diagnostic and therapeutic target in treatment of BC.

Details

ISSN :
18387640
Volume :
9
Database :
OpenAIRE
Journal :
Theranostics
Accession number :
edsair.doi.dedup.....11474d6157216b026496fb4a8dc64025
Full Text :
https://doi.org/10.7150/thno.36030