Back to Search
Start Over
The juxtamembrane region of the epidermal growth factor receptor is required for phosphorylation of Galpha(s)
- Source :
- Archives of biochemistry and biophysics. 383(2)
- Publication Year :
- 2001
-
Abstract
- We have previously demonstrated that Galpha(s) associates with the juxtamembrane region of the epidermal growth factor (EGF) receptor (EGFR) and that the EGFR can phosphorylate and activate this G protein (H. Poppleton et al., 1996, J. Biol. Chem. 271, 6947-6951; H. Sun et al., 1995, Proc. Natl. Acad. Sci. USA 92, 2229-2233). In this report, we have employed peptides EGFR-13 and EGFR-14 (corresponding to amino acids 645-657 and 679-692 in the EGFR, respectively) which disrupt the association of Galpha(s) with the EGFR to investigate whether or not this region of the EGFR is required for phosphorylation of the G protein. EGFR-13 increased the tyrosine phosphorylation of G(alpha)s by two-fold whereas EGFR-14 decreased the phosphorylation of the G protein. Phosphorylation of EGFR-13 on the threonine residue corresponding to Thr654 of the EGFR obliterated the ability of the peptide to increase Galpha(s) phosphorylation. EGFR-13 and EGFR-14, but not phospho-EGFR-13, competed for the association of the EGFR with Galpha(s). A peptide betaIII-2 corresponding to amino acids Arg259-Lys273 in the beta2-adrenergic receptor which competes for association of Galpha(s) with the EGFR and increases protein tyrosine kinase activity of the EGFR could mimic the effects of EGFR-13. Among the three peptides (EGFR-13, EGFR-14, and betaIII-2) that interfere with association of Galpha(s) to the EGFR, only EGFR-13 and betaIII-2 have been shown to activate the G protein. Polylysine which increases EGFR tyrosine kinase activity but does not interfere with association of Galpha(s) and EGFR also augmented phosphorylation of Galpha(s) by the EGFR. Phosphopeptide mapping demonstrated that EGFR-13 and polylysine increased phosphorylation of Galpha(s) by the EGFR on the same additional sites. Collectively, these data suggest that the interaction of Galpha(s) with residues 645-657 of the EGFR, or a peptide corresponding to this sequence alters the conformation of the G protein and/or the EGFR such that Galpha(s) is readily phosphorylated by the EGFR. The peptide EGFR-14, which does not activate Galpha(s), does not allow for the efficient phosphorylation of the G protein even though it does elevate the intrinsic tyrosine kinase activity of the EGFR. The hyperphosphorylation of Galpha(s) by EGFR is likely to require the contact of the G protein with EGFR-13 region (aa 645-657 in the EGFR) as well as augmentation of EGFR kinase activity.
- Subjects :
- Threonine
Gs alpha subunit
Protein Conformation
Biophysics
Biochemistry
Models, Biological
Peptide Mapping
Receptor tyrosine kinase
chemistry.chemical_compound
Epidermal growth factor
Escherichia coli
Tumor Cells, Cultured
Humans
ERBB3
Polylysine
Kinase activity
Amino Acids
Phosphorylation
Molecular Biology
biology
Dose-Response Relationship, Drug
Tyrosine phosphorylation
Intracellular Membranes
Protein-Tyrosine Kinases
Molecular biology
Heterotrimeric GTP-Binding Proteins
Recombinant Proteins
Protein Structure, Tertiary
ErbB Receptors
chemistry
biology.protein
Tyrosine
Electrophoresis, Polyacrylamide Gel
Receptors, Adrenergic, beta-2
Peptides
Tyrosine kinase
Plasmids
Protein Binding
Subjects
Details
- ISSN :
- 00039861
- Volume :
- 383
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Archives of biochemistry and biophysics
- Accession number :
- edsair.doi.dedup.....114df51ac8521009958d639e7edab5a9