Back to Search Start Over

Reduced forms of linear differential systems and the intrinsic Galois-Lie algebra of Katz

Authors :
Jacques-Arthur Weil
Lucia Di Vizio
Moulay A. Barkatou
Thomas Cluzeau
Université de Limoges (UNILIM)
Mathématiques & Sécurité de l'information (XLIM-MATHIS)
XLIM (XLIM)
Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS)-Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Mathématiques de Versailles (LMV)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
DMI
GDR 2052 EQUATIONS FONCTIONNELLES ET INTERACTIONS
ANR-19-CE40-0018,DeRerumNatura,Décider l'irrationalité et la transcendance(2019)
Source :
Symmetry, Integrability and Geometry : Methods and Applications, Symmetry, Integrability and Geometry : Methods and Applications, National Academy of Science of Ukraine, 2020
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

13 pages; International audience; Generalizing the main result of (Aparicio, Compoint, Weil 2013), we prove that a system is in reduced form in the sense of Kochin and Kovacic if and only if any differential module in an algebraic construction admits a constant basis. Then we derive an explicit version of this statement, which was implicit in (Aparicio, Compoint, Weil 2013) and is a crucial ingredient of (Barkatou, Cluzeau, Di Vizio, Weil 2016). We finally deduce some properties of the Lie algebra of Katz's intrinsic Galois group, which is actually another fundamental ingredient of the algorithm in (Barkatou, Cluzeau, Di Vizio, Weil 2016).

Details

Language :
English
ISSN :
18150659
Database :
OpenAIRE
Journal :
Symmetry, Integrability and Geometry : Methods and Applications, Symmetry, Integrability and Geometry : Methods and Applications, National Academy of Science of Ukraine, 2020
Accession number :
edsair.doi.dedup.....119ba0fdf3126c2576ec4b98187fa54f