Back to Search Start Over

α4βδ GABA A receptors are high-affinity targets for γ-hydroxybutyric acid (GHB)

Authors :
Hans Bräuner-Osborne
Rasmus P. Clausen
Bente Frølund
Nasiara Karim
Gitte M. Knudsen
Mary Chebib
Jesper V. Olsen
Laura F. Eghorn
Petrine Wellendorph
Nathan L. Absalom
Inge S. Villumsen
Tina Bay
Source :
Proceedings of the National Academy of Sciences. 109:13404-13409
Publication Year :
2012
Publisher :
Proceedings of the National Academy of Sciences, 2012.

Abstract

γ-Hydroxybutyric acid (GHB) binding to brain-specific high-affinity sites is well-established and proposed to explain both physiological and pharmacological actions. However, the mechanistic links between these lines of data are unknown. To identify molecular targets for specific GHB high-affinity binding, we undertook photolinking studies combined with proteomic analyses and identified several GABA A receptor subunits as possible candidates. A subsequent functional screening of various recombinant GABA A receptors in Xenopus laevis oocytes using the two-electrode voltage clamp technique showed GHB to be a partial agonist at αβδ- but not αβγ-receptors, proving that the δ-subunit is essential for potency and efficacy. GHB showed preference for α4 over α(1,2,6)-subunits and preferably activated α4β1δ (EC 50 = 140 nM) over α4β(2/3)δ (EC 50 = 8.41/1.03 mM). Introduction of a mutation, α4F71L, in α4β1(δ)-receptors completely abolished GHB but not GABA function, indicating nonidentical binding sites. Radioligand binding studies using the specific GHB radioligand [ 3 H]( E , RS )-(6,7,8,9-tetrahydro-5-hydroxy-5 H -benzocyclohept-6-ylidene)acetic acid showed a 39% reduction ( P = 0.0056) in the number of binding sites in α4 KO brain tissue compared with WT controls, corroborating the direct involvement of the α4-subunit in high-affinity GHB binding. Our data link specific GHB forebrain binding sites with α4-containing GABA A receptors and postulate a role for extrasynaptic α4δ-containing GABA A receptors in GHB pharmacology and physiology. This finding will aid in elucidating the molecular mechanisms behind the proposed function of GHB as a neurotransmitter and its unique therapeutic effects in narcolepsy and alcoholism.

Details

ISSN :
10916490 and 00278424
Volume :
109
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi.dedup.....11f9fe98fa80fc3fd96015e9699bbf4f
Full Text :
https://doi.org/10.1073/pnas.1204376109