Back to Search
Start Over
Model animasyonlarının PCA kullanılarak harekete bağlı gruplandırılması
- Source :
- Proceedings of the IEEE 17th Signal Processing and Communications Applications Conference, SIU 2009
- Publication Year :
- 2009
- Publisher :
- IEEE, 2009.
-
Abstract
- Date of Conference: 9-11 April 2009 Conference Name: IEEE 17th Signal Processing and Communications Applications Conference, SIU 2009 In the last few years, there is great increase in capture and representation of real 3-Dimensonal scenes using 3D animation models. The 3D signals are then compressed, transmitted to the client side and reconstructed for the user view. Each step mentioned here opened a new subject in the field of signal processing. While processing these models, using the model as a whole is not the best approach. Therefore clustering the model vertices became a very common method. For example, it is very common to use motion based clustering in animation compression. In this paper a new dynamic model clustering algorithm is proposed. Animation vertices are first put through PCA and partitioned into their eigenvalues and eigenvectors. The eigenvectors found using the proposed method can be called eigentrajectories. Then the dot product of the these eigentrajectories with the trajectories of the animation vertice are found. These coefficients are used to cluster the animation model. The results and the comparisons with a similar approach show that the proposed algorithm is successful.
- Subjects :
- Signal processing
Animation compression
Eigenvalues and eigenfunctions
Clustering algorithms
Signal reconstruction
business.industry
Computer science
Three dimensional
Signal compression
Animation
3D animation
Skeletal animation
Computer vision
Artificial intelligence
Cluster analysis
business
Computer animation
Data compression
Eigenvalues and eigenvectors
Subjects
Details
- Language :
- Turkish
- Database :
- OpenAIRE
- Journal :
- Proceedings of the IEEE 17th Signal Processing and Communications Applications Conference, SIU 2009
- Accession number :
- edsair.doi.dedup.....12549e2ba0d766d0c3851851c3ae665a