Back to Search
Start Over
Homogenization of 2D Cahn–Hilliard–Navier–Stokes system
- Source :
- Journal of Elliptic and Parabolic Equations, Journal of Elliptic and Parabolic Equations, 2020, 6 (1), pp.377-408. ⟨10.1007/s41808-020-00074-w⟩
- Publication Year :
- 2020
- Publisher :
- HAL CCSD, 2020.
-
Abstract
- In the current work, we are performing the asymptotic analysis, beyond the periodic setting, of the Cahn-Hilliard-Navier-Stokes system. Under the general deterministic distribution assumption on the microstructures in the domain, we find the limit model equivalent to the heterogeneous one. To this end, we use the sigma-convergence concept which is suitable for the passage to the limit.<br />28 pages
- Subjects :
- Variable viscosity
Mathematics::Analysis of PDEs
FOS: Physical sciences
01 natural sciences
Homogenization (chemistry)
Physics::Fluid Dynamics
Mathematics - Analysis of PDEs
FOS: Mathematics
Applied mathematics
35B27, 35B40, 46J10
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
Navier stokes
0101 mathematics
Mathematical Physics
ComputingMilieux_MISCELLANEOUS
Mathematics
Sigma-convergence
Numerical Analysis
Homogenization
Partial differential equation
Applied Mathematics
010102 general mathematics
Mathematical Physics (math-ph)
010101 applied mathematics
Cahn–Hilliard–Navier–Stokes system
Analysis
Analysis of PDEs (math.AP)
Subjects
Details
- Language :
- English
- ISSN :
- 22969020
- Database :
- OpenAIRE
- Journal :
- Journal of Elliptic and Parabolic Equations, Journal of Elliptic and Parabolic Equations, 2020, 6 (1), pp.377-408. ⟨10.1007/s41808-020-00074-w⟩
- Accession number :
- edsair.doi.dedup.....12560f204cd11847ee8b7bc3f0f63663
- Full Text :
- https://doi.org/10.1007/s41808-020-00074-w⟩