Back to Search Start Over

scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles

Authors :
Qing Nie
Suoqin Jin
Lihua Zhang
Source :
Genome Biology, Genome Biology, Vol 21, Iss 1, Pp 1-19 (2020), Genome biology, vol 21, iss 1
Publication Year :
2019

Abstract

Simultaneous measurements of transcriptomic and epigenomic profiles in the same individual cells provide an unprecedented opportunity to understand cell fates. However, effective approaches for the integrative analysis of such data are lacking. Here, we present a single-cell aggregation and integration (scAI) method to deconvolute cellular heterogeneity from parallel transcriptomic and epigenomic profiles. Through iterative learning, scAI aggregates sparse epigenomic signals in similar cells learned in an unsupervised manner, allowing coherent fusion with transcriptomic measurements. Simulation studies and applications to three real datasets demonstrate its capability of dissecting cellular heterogeneity within both transcriptomic and epigenomic layers and understanding transcriptional regulatory mechanisms.

Details

ISSN :
1474760X
Volume :
21
Issue :
1
Database :
OpenAIRE
Journal :
Genome biology
Accession number :
edsair.doi.dedup.....12613c4c5307232db2373418368ab4b4