Back to Search Start Over

Optimization of a self-closing effect to produce nanochannels with top slits in fused silica

Authors :
Heiner Linke
Anders Kvennefors
Mariusz Graczyk
Martina Balaz
Ivan Maximov
Source :
ResearcherID

Abstract

The authors report on the fabrication of subsurfaced 100–600 nm wide nanochannels in fused silica with top slit openings in the size range of 5–10 nm. Such nanochannels can be used in combination with a nanofluidics system to guide molecular motors and quickly switch the chemical environment inside the nanochannels through diffusion via the top slits. To realize nanochannel top slits in this size range, the authors here demonstrate the use of a self-closing effect based on the volume expansion of a thin Si layer during oxidation. A high contrast electron beam lithography exposure step in conjunction with dry etching of SiO2 by reactive ion etching (RIE) and Si by inductively coupled plasma-RIE followed by wet etching of a fused silica substrate is used to create the initial slit before oxidation. The details of nanochannel fabrication steps are described and discussed.

Details

Database :
OpenAIRE
Journal :
ResearcherID
Accession number :
edsair.doi.dedup.....12be836444c3d82b1dd4bc31b8851d6f
Full Text :
https://doi.org/10.1116/1.4766317