Back to Search
Start Over
Structure, morphology, adhesion and in vitro biological evaluation of antibacterial multi-layer HA-Ag/SiO2/TiN/Ti coatings obtained by RF magnetron sputtering for biomedical applications
- Source :
- RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia, instname
- Publication Year :
- 2020
- Publisher :
- Elsevier BV, 2020.
-
Abstract
- [EN] Biocompatible and antibacterial multi-layer coatings of hydroxyapatite (HA)-Ag/SiO2/TiN/Ti were obtained on the Ti-6Al-4V alloy, by means of the magnetron sputtering technique. During characterization of the coatings, the chemical composition was evaluated by energy dispersive X-ray spectroscopy and the phase analysis was carried out by X-ray diffraction. The morphology of the coatings was observed by field emission scanning electron microscopy, while transmission electron microscopy was used to appreciate their structure. The adhesion of the coatings to the substrate was evaluated by micro scratch test. The in vitro biological response was evaluated in terms of cytotoxicity, adhesion and differentiation of mouse mesenchymal stem cells, as well as adhesion and bacterial viability of Staphylococcus aureus strain. Through the compositional study carried out, the deposition of the HA phase was verified, with a Ca/P ratio close to 1.67 and the characteristic diffraction peaks of this compound. The structural study of the coatings evidenced the obtention of multi-layer architectures. The use of an intermediate SiO2/TiN/Ti trilayer was found to improve adhesion between HA-Ag and the substrate by 84%. Finally, the in vitro biological tests carried out indicated a potentially non-toxic character in the coatings. Additionally, an antibacterial effect was registered at low concentrations of Ag (< 0.25 mg/L).<br />We thank the University of Antioquia, the Centro de Investigacion, Innovacion y Desarrollo de materiales (CIDEMAT) group, the Departamento Administrativo de Ciencia, Tecnologia e Innovacion (COLCIENCIAS) for financing the Project 15-1696, the scholarship program of Enlazamundos, the Agencia de Educacion Superior de Medellin (Sapiencia), JLGR acknowledges financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2016-76039-C4-1-R and MAT 2015-63974-C4-3-R (AEI/FEDER, UE) (including the FEDER financial support). PR acknowledges support from the Spanish Ministry of Science, Innovation and Universities (RTI2018-096794), and Fondo Europeo de Desarrollo Regional (FEDER). CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund, M-ERA.NET PCIN-2016-146 and RTI2018-096862-B-I00, Spanish "Junta de Extremadura" for the projects IB16117, TE-0016-18 and GR18153.
- Subjects :
- Materials science
Alloy
chemistry.chemical_element
Bioengineering
02 engineering and technology
engineering.material
010402 general chemistry
01 natural sciences
In vitro biological properties
Hydroxyapatite
Biomaterials
Phase (matter)
03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades
Deposition (law)
Multi-layer coating
Substrate (chemistry)
Structure
Adhesion
Sputter deposition
Interface
021001 nanoscience & nanotechnology
0104 chemical sciences
chemistry
Chemical engineering
Mechanics of Materials
Transmission electron microscopy
MAQUINAS Y MOTORES TERMICOS
engineering
0210 nano-technology
Tin
Magnetron sputtering
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia, instname
- Accession number :
- edsair.doi.dedup.....12bee88d0986a078483d4dfe843a19bf
- Full Text :
- https://doi.org/10.1016/j.msec.2020.111268