Back to Search
Start Over
A Gaussian random field model for de-speckling of multi-polarized Synthetic Aperture Radar data
- Source :
- Advances in Space Research
- Publication Year :
- 2019
- Publisher :
- Elsevier BV, 2019.
-
Abstract
- Synthetic Aperture Radar (SAR) data have gained interest for a variety of remote sensing applications, given the capability of SAR sensors to operate independent of solar radiation and day/night conditions. However, the radiometric quality of SAR images is hindered by speckle noise, which affects further image processing and interpretation. As such, speckle reduction is a crucial pre-processing step in many remote sensing studies based on SAR imagery. This study proposes a new adaptive de-speckling method based on a Gaussian Markov Random Field (GMRF) model. The proposed method integrates both pixel-wised and contextual information using a weighted summation technique. As a by-product of the proposed method, a de-speckled pseudo-span image, which is obtained from the least-squares analysis of the de-speckled multi-polarization channels, is also produced. Experimental results from the medium resolution, fully polarimetric L-band ALOS PALSAR data demonstrate the effectiveness of the proposed algorithm compared to other well-known de-speckling approaches. The de-speckled images produced by the proposed method maintainthe mean value of the original image in homogenous areas, while preserving the edges of features in heterogeneous regions. In particular, the equivalent number of look (ENL) achieved using the proposed method improves by about 15% and 47% compared to the NL-SAR and SARBM3D de-speckling approaches, respectively. Other evaluation indices, such as the mean and variance of the ratio image also reveal the superiority of the proposed method relative to other de-speckling approaches examined in this study.
- Subjects :
- Synthetic aperture radar
Atmospheric Science
010504 meteorology & atmospheric sciences
Computer science
Remote sensing application
Gaussian
Polarimetry
Aerospace Engineering
Image processing
01 natural sciences
Gaussian random field
Image (mathematics)
symbols.namesake
0103 physical sciences
010303 astronomy & astrophysics
0105 earth and related environmental sciences
business.industry
Astronomy and Astrophysics
Speckle noise
Pattern recognition
Geophysics
Space and Planetary Science
symbols
General Earth and Planetary Sciences
Artificial intelligence
business
Subjects
Details
- ISSN :
- 02731177
- Volume :
- 64
- Database :
- OpenAIRE
- Journal :
- Advances in Space Research
- Accession number :
- edsair.doi.dedup.....13154c53598c7b78deb36b29ce770ccf
- Full Text :
- https://doi.org/10.1016/j.asr.2019.03.013