Back to Search Start Over

A mobile element-based evolutionary history of guenons (tribe Cercopithecini)

Authors :
Anthony J. Tosi
Mark A. Batzer
Todd R. Disotell
David A. Ray
Yuhua Zhang
Jinchuan Xing
Hui Wang
Source :
BMC Biology, BMC Biology, Vol 5, Iss 1, p 5 (2007)
Publication Year :
2007
Publisher :
BioMed Central, 2007.

Abstract

Background Guenons (tribe Cercopithecini) are a species-rich group of primates that have attracted considerable attention from both primatologists and evolutionary biologists. The complex speciation pattern has made the elucidation of their relationships a challenging task, and many questions remain unanswered. SINEs are a class of non-autonomous mobile elements and are essentially homoplasy-free characters with known ancestral states, making them useful genetic markers for phylogenetic studies. Results We identified 151 novel Alu insertion loci from 11 species of tribe Cercopithecini, and used these insertions and 17 previously reported loci to infer a phylogenetic tree of the tribe Cercopithecini. Our results robustly supported the following relationships: (i) Allenopithecus is the basal lineage within the tribe; (ii) Cercopithecus lhoesti (L'Hoest's monkey) forms a clade with Chlorocebus aethiops (African green monkey) and Erythrocebus patas (patas monkey), supporting a single arboreal to terrestrial transition within the tribe; (iii) all of the Cercopithecus except C. lhoesti form a monophyletic group; and (iv) contrary to the common belief that Miopithecus is one of the most basal lineages in the tribe, M. talapoin (talapoin) forms a clade with arboreal members of Cercopithecus, and the terrestrial group (C. lhoesti, Chlorocebus aethiops and E. patas) diverged from this clade after the divergence of Allenopithecus. Some incongruent loci were found among the relationships within the arboreal Cercopithecus group. Several factors, including incomplete lineage sorting, concurrent polymorphism and hybridization between species may have contributed to the incongruence. Conclusion This study presents one of the most robust phylogenetic hypotheses for the tribe Cercopithecini and demonstrates the advantages of SINE insertions for phylogenetic studies.

Details

Language :
English
ISSN :
17417007
Volume :
5
Database :
OpenAIRE
Journal :
BMC Biology
Accession number :
edsair.doi.dedup.....13301a0081a018ec2c377c1986f0b4fb