Back to Search Start Over

SDNET2018: An annotated image dataset for non-contact concrete crack detection using deep convolutional neural networks

Authors :
Robert J. Thomas
Sattar Dorafshan
Marc Maguire
Elsevier
Source :
Data in Brief, Vol 21, Iss, Pp 1664-1668 (2018), Data in Brief, Civil and Environmental Engineering Faculty Publications
Publication Year :
2018
Publisher :
Elsevier, 2018.

Abstract

SDNET2018 is an annotated image dataset for training, validation, and benchmarking of artificial intelligence based crack detection algorithms for concrete. SDNET2018 contains over 56,000 images of cracked and non-cracked concrete bridge decks, walls, and pavements. The dataset includes cracks as narrow as 0.06 mm and as wide as 25 mm. The dataset also includes images with a variety of obstructions, including shadows, surface roughness, scaling, edges, holes, and background debris. SDNET2018 will be useful for the continued development of concrete crack detection algorithms based on deep convolutional neural networks (DCNNs), which are a subject of continued research in the field of structural health monitoring. The authors present benchmark results for crack detection using SDNET2018 and a crack detection algorithm based on the AlexNet DCNN architecture. SDNET2018 is freely available at https://doi.org/10.15142/T3TD19 .

Details

Language :
English
ISSN :
23523409
Volume :
21
Database :
OpenAIRE
Journal :
Data in Brief
Accession number :
edsair.doi.dedup.....13ceb8d3559e5f3306550a77dc36e9be