Back to Search Start Over

Combining Stacked Denoising Autoencoders and Random Forests for Face Detection

Authors :
Xianghua Xie
Michael Edwards
Jingjing Deng
Source :
Advanced Concepts for Intelligent Vision Systems ISBN: 9783319486796, ACIVS
Publication Year :
2016

Abstract

Detecting faces in the wild is a challenging problem due to large visual variations introduced by uncontrolled facial expressions, head pose, illumination and so on. Employing strong classifier and designing more discriminative visual features are two main approaches to overcoming such difficulties. Notably, Deep Neural Network (DNN) based methods have been found to outperform most traditional detectors in a multitude of studies, employing deep network structures and complex training procedures. In this work, we propose a novel method that uses stacked denoising autoencoders (SdA) for feature extraction and random forests (RF) for object-background classification in a classical cascading framework. This architecture allows much simpler neural network structures, resulting in efficient training and detection. The proposed face detector was evaluated on two publicly available datasets and produced promising results.

Details

Language :
English
ISBN :
978-3-319-48679-6
ISBNs :
9783319486796
Database :
OpenAIRE
Journal :
Advanced Concepts for Intelligent Vision Systems ISBN: 9783319486796, ACIVS
Accession number :
edsair.doi.dedup.....13f39bafb4a2b00b6aab399adcda035f