Back to Search Start Over

On quantum matrix algebras satisfying the Cayley - Hamilton - Newton identities

Authors :
Oleg Ogievetsky
Pavel Pyatov
A. P. Isaev
Ogievetsky, Oleg
Centre de Physique Théorique - UMR 6207 (CPT)
Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)-Université de Provence - Aix-Marseille 1-Université de la Méditerranée - Aix-Marseille 2
Centre de Physique Théorique - UMR 7332 (CPT)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Physics A: Mathematical and General. 32:L115-L121
Publication Year :
1999
Publisher :
IOP Publishing, 1999.

Abstract

The Cayley-Hamilton-Newton identities which generalize both the characteristic identity and the Newton relations have been recently obtained for the algebras of the RTT-type. We extend this result to a wider class of algebras M(R,F) defined by a pair of compatible solutions of the Yang-Baxter equation. This class includes the RTT-algebras as well as the Reflection equation algebras.

Details

ISSN :
13616447 and 03054470
Volume :
32
Database :
OpenAIRE
Journal :
Journal of Physics A: Mathematical and General
Accession number :
edsair.doi.dedup.....1420cd5a507748895178ddede545dde7
Full Text :
https://doi.org/10.1088/0305-4470/32/9/002