Back to Search Start Over

The reconstructed tree in the lineage-based model of protracted speciation

Authors :
Hélène Morlon
Amaury Lambert
Rampal S. Etienne
SMILE - Stochastic models for the inference of life evolution
Laboratoire de Probabilités et Modèles Aléatoires (LPMA)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre interdisciplinaire de recherche en biologie (CIRB)
Labex MemoLife
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Collège de France (CdF (institution))-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris)
Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Labex MemoLife
Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Centre de Mathématiques Appliquées (CMAP)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
University of Groningen [Groningen]
Lambert, Amaury
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Centre interdisciplinaire de recherche en biologie (CIRB)
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Labex MemoLife
Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Etienne group
Centre interdisciplinaire de recherche en biologie (CIRB)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC)
Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP)
École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
Community and Conservation Ecology Group [Groningen]
Université de Groningen
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Mathematical Biology, 70(1-2), 367-397. SPRINGER HEIDELBERG, Journal of Mathematical Biology, Journal of Mathematical Biology, Springer Verlag (Germany), 2015, 70 (1-2), pp.367-397. ⟨10.1007/s00285-014-0767-x⟩, Journal of Mathematical Biology, 2015, 70 (1-2), pp.367-397. ⟨10.1007/s00285-014-0767-x⟩
Publication Year :
2013

Abstract

A popular line of research in evolutionary biology is the use of time-calibrated phylogenies for the inference of diversification processes. This requires computing the likelihood of a given ultrametric tree as the reconstructed tree produced by a given model of diversification. Etienne & Rosindell (2012) proposed a lineage-based model of diversification, called protracted speciation, where species remain incipient during a random duration before turning good species, and showed that this can explain the slowdown in lineage accumulation observed in real phylogenies. However, they were unable to provide a general likelihood formula. Here, we present a likelihood formula for protracted speciation models, where rates at which species turn good or become extinct can depend both on their age and on time. Our only restrictive assumption is that speciation rate does not depend on species status. Our likelihood formula utilizes a new technique, based on the contour of the phylogenetic tree and first developed in Lambert (2010). We consider the reconstructed trees spanned by all extant species, by all good extant species, or by all representative species, which are either good extant species or incipient species representative of some good extinct species. Specifically, we prove that each of these trees is a coalescent point process, that is, a planar, ultrametric tree where the coalescence times between two consecutive tips are independent, identically distributed random variables. We characterize the common distribution of these coalescence times in some, biologically meaningful, special cases for which the likelihood reduces to an elegant analytical formula or becomes numerically tractable.<br />27 pages, 5 figures

Details

ISSN :
14321416 and 03036812
Volume :
70
Issue :
1-2
Database :
OpenAIRE
Journal :
Journal of mathematical biology
Accession number :
edsair.doi.dedup.....1477c674d019fca316a2dde58fa1c66d
Full Text :
https://doi.org/10.1007/s00285-014-0767-x⟩