Back to Search Start Over

Inverse-designed growth-based cellular metamaterials

Authors :
Sikko Van ’t Sant
Prakash Thakolkaran
Jonàs Martínez
Siddhant Kumar
Delft University of Technology (TU Delft)
Matter from Graphics (MFX)
Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Algorithms, Computation, Image and Geometry (LORIA - ALGO)
Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
ANR-17-CE10-0002,MuFFin,Microstructures procedurales et stochastiques pour la fabrication fonctionnelle(2017)
Source :
Mechanics of Materials, Mechanics of Materials, 2023, 182, pp.104668. ⟨10.1016/j.mechmat.2023.104668⟩, Mechanics of Materials, 182
Publication Year :
2023
Publisher :
Elsevier BV, 2023.

Abstract

International audience; Advancements in machine learning have sparked significant interest in designing mechanical metamaterials, i.e., materials that derive their properties from their inherent microstructure rather than just their constituent material. We propose a data-driven exploration of the design space of growth-based cellular metamaterials based on star-shaped distances. These two-dimensional metamaterials are based on periodically-repeating unit cells consisting of material and void patterns with non-trivial geometries. Machine learning models exploiting large datasets are then employed to inverse design growth-based metamaterials for tailored anisotropic stiffness. Firstly, a forward model is created to bypass the growth and homogenization process and accurately predict the mechanical properties given a finite set of design parameters. Secondly, an inverse model is used to invert the structure–property maps and enable the accurate prediction of designs for a given anisotropic stiffness query. We successfully demonstrate the frameworks’ generalization capabilities by inverse designing for stiffness properties chosen from outside the domain of the design space.

Details

ISSN :
01676636 and 18727743
Volume :
182
Database :
OpenAIRE
Journal :
Mechanics of Materials
Accession number :
edsair.doi.dedup.....148f517f633bd9fdab3861ca59f52b9b
Full Text :
https://doi.org/10.1016/j.mechmat.2023.104668