Back to Search
Start Over
Reaction Torque Control of Redundant Space Robotic Systems for Orbital Maintenance and Simulated Microgravity Tests
- Publication Year :
- 2010
- Publisher :
- Elsevier Science Limited:Oxford Fulfillment Center, PO Box 800, Kidlington Oxford OX5 1DX United Kingdom:011 44 1865 843000, 011 44 1865 843699, EMAIL: asianfo@elsevier.com, tcb@elsevier.co.UK, INTERNET: http://www.elsevier.com, http://www.elsevier.com/locate/shpsa/, Fax: 011 44 1865 843010, 2010.
-
Abstract
- This paper presents the theoretical formulation and the experimental validation of a novel solution for the inverse kinematics of redundant space robotic systems aimed at locally minimizing the torque transferred to the spacecraft due to the robotic arm movement. The differential kinematics is formulated at the acceleration level and an additional constraint is imposed in order to locally minimize the torque transferred to the spacecraft center of mass. This problem can be expressed as a constrained linear least squares problem and a closed-form solution is obtained. An extension of this method is presented in order to take into account the physical limits of the manipulator, by limiting the joint accelerations under acceptable values. In this case the problem can be expressed as a constrained linear least squares problem with both equality and inequality constraints. The proposed solution has been experimentally tested using a 3D free-flying robot previously tested in an ESA Parabolic Flight Campaign. In this test campaign the 3D robot has been converted in a 2D robot taking advantage of its modular structure, and it has been suspended by means of air-bearings on a granite plane. In this way it is possible to perform simulated microgravity tests without time constraints. The base of the robot is fixed on ground by means of a custom design dynamometer, which measures the torque transferred to ground to be minimized. The experimental results validated the proposed solutions and confirmed their good performance.
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....149421225e9284fd03b9353efdcbf3cf