Back to Search
Start Over
Sorrel Extract Reduces Oxidant Production in Airway Epithelial Cells Exposed to Swine Barn Dust Extract In Vitro
- Source :
- Mediators of Inflammation, Mediators of Inflammation, Vol 2019 (2019)
- Publication Year :
- 2019
- Publisher :
- Hindawi, 2019.
-
Abstract
- Exposure to hog barn organic dust contributes to occupational lung diseases, which are mediated by inflammatory and oxidative stress pathways. Isoprostanes—a family of eicosanoids produced by oxidation of phospholipids by oxygen radicals—are biomarkers of pulmonary oxidative stress. Importantly, 8-isoprostane has been implicated as a key biomarker and mediator of oxidative stress because it is a potent pulmonary vasoconstrictor. Antioxidants found in fruits and vegetables hold promise for preventing or reducing effects of oxidative stress-related diseases including chronic bronchitis and chronic obstructive pulmonary disease (COPD). Here, we investigated 8-isoP and oxidant production by organic dust-exposed airway epithelial cells and the inhibitory effects of an extract from calyces of the sorrel plant, Hibiscus sabdariffa, on oxidant-producing pathways. Confluent cultures of normal human tracheobronchial epithelial cells were pretreated or not with 1% sorrel extract prior to 5% dust extract (DE) exposure. Following DE treatments, live cells, cell-free supernatants, or cell extracts were evaluated for the presence of 8-isoprostane, superoxide, hydrogen peroxide, nitric oxide, hydroxyl radical, peroxynitrite, and catalase activity to evaluate sorrel’s inhibitory effect on oxidative stress. The well-known radical scavenging antioxidant, N-acetyl cysteine (NAC), was used for comparisons with sorrel. DE exposure augmented the production of all radicals measured including 8-isoprostane (p value < 0.001), which could be inhibited by NAC or sorrel. Among reactive oxygen and nitrogen species generated in response to DE exposure, sorrel had no effect on H2O2 production and NAC had no significant effect on NO⋅ production. The observations reported here suggest a possible role for sorrel in preventing 8-isoprostane and oxidant-mediated stress responses in bronchial epithelial cells exposed to hog barn dust. These findings suggest a potential role for oxidative stress pathways in mediating occupational lung diseases and antioxidants within sorrel and NAC in reducing dust-mediated oxidative stress within the airways of exposed workers.
- Subjects :
- 0301 basic medicine
Chronic bronchitis
Antioxidant
Article Subject
Swine
medicine.medical_treatment
Immunology
Pharmacology
medicine.disease_cause
Nitric oxide
03 medical and health sciences
chemistry.chemical_compound
0302 clinical medicine
medicine
lcsh:Pathology
Animals
biology
Superoxide
Plant Extracts
Hibiscus sabdariffa
Dust
Epithelial Cells
Cell Biology
Hydrogen Peroxide
Oxidative Stress
030104 developmental biology
chemistry
Hibiscus
Catalase
030220 oncology & carcinogenesis
biology.protein
Reactive Oxygen Species
Peroxynitrite
Oxidative stress
lcsh:RB1-214
Research Article
Subjects
Details
- Language :
- English
- ISSN :
- 14661861 and 09629351
- Volume :
- 2019
- Database :
- OpenAIRE
- Journal :
- Mediators of Inflammation
- Accession number :
- edsair.doi.dedup.....14ba23ba062c7233dd05428af19ca7c2