Back to Search Start Over

Merge-and-simplify operation for compact combinatorial pyramid definition

Authors :
Guillaume Damiand
Florence Zara
Geometry Processing and Constrained Optimization (M2DisCo)
Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS)
Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-École Centrale de Lyon (ECL)
Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Université Lumière - Lyon 2 (UL2)
Origami (Origami)
Simulation, Analyse et Animation pour la Réalité Augmentée (SAARA)
Source :
Pattern Recognition Letters, Pattern Recognition Letters, Elsevier, 2020, 129, pp.48-55. ⟨10.1016/j.patrec.2019.11.009⟩
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

International audience; Image pyramids are employed for years in digital image processing. They permit to store and use different scales/levels of details of an image. To represent all the topological information of the different levels, combinatorial pyramids have proved having many interests. But, when using an explicit representation, one drawback of this structure is the memory space required to store such a pyramid. In this paper, this drawback is solved by defining a compact version of combinatorial pyramids. This definition is based on the definition of a new operation, called "merge-and-simplify", which simultaneously merges regions and simplifies their boundaries. Our experiments show that the memory space of our solution is much smaller than the one of the original version. Moreover, the computation time of our solution is faster, because there are less levels in our pyramid than in the original one.

Details

ISSN :
01678655
Volume :
129
Database :
OpenAIRE
Journal :
Pattern Recognition Letters
Accession number :
edsair.doi.dedup.....14ee36312c0efc71c82d75a4eb8b121d
Full Text :
https://doi.org/10.1016/j.patrec.2019.11.009