Back to Search Start Over

Deep Learning Based Automatic Speech Recognition for Turkish

Authors :
Hamit Erdem
Burak Tombaloğlu
Source :
Volume: 24, Issue: 4 725-739, Sakarya University Journal of Science
Publication Year :
2020
Publisher :
Sakarya University Journal of Science, 2020.

Abstract

Using Deep Neural Networks (DNN) as an advanced Artificial Neural Networks (ANN) has become widespread with the development of computer technology. Although DNN has been applied for solving Automatic Speech Recognition (ASR) problem in some languages, DNN-based Turkish Speech Recognition has not been studied extensively. Turkish language is an agglutinative and a phoneme-based language. In this study, a Deep Belief Network (DBN) based Turkish phoneme and speech recognizer is developed. The proposed system recognizes words in the system vocabulary and phoneme components of out of vocabulary (OOV) words. Sub-word (morpheme) based language modelling is implemented into the system. Each phoneme of Turkish language is also modelled as a sub-word in the model. Sub-word (morpheme) based language model is widely used for agglutinative languages to prevent excessive vocabulary size. The performance of the suggested DBN based ASR system is compared with the conventional recognition method, GMM (Gaussian Mixture Method) based Hidden Markov Model (HMM). Regarding to performance metrics, the recognition rate of Turkish language is improved in compare with previous studies.

Details

ISSN :
2147835X
Volume :
24
Database :
OpenAIRE
Journal :
Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi
Accession number :
edsair.doi.dedup.....14f0babe798059d46b964960095679cc
Full Text :
https://doi.org/10.16984/saufenbilder.711888