Back to Search
Start Over
Species discrimination and total polyphenol prediction of porcini mushrooms by fourier transform mid‐infrared (FT‐MIR) spectrometry combined with multivariate statistical analysis
- Source :
- Food Science & Nutrition, Food Science & Nutrition, 8(2):754-766, Food Science & Nutrition, Vol 8, Iss 2, Pp 754-766 (2020)
- Publication Year :
- 2020
- Publisher :
- Wiley, 2020.
-
Abstract
- The plateau specialty agricultural products, wild porcini mushrooms, have great value both as a superb cuisine and as a potential medication. Due to quality different between species added with the fraud behavior in sales process, make poor quality or poisonous sample inflow into the market, which pose a health risk for consumers, but also disrupted the mushroom market. Traditional analysis way is time‐consuming and laborious. Therefore, the aim of this study is to develop a way using fourier transform mid‐infrared (FT‐MIR) spectrometry and data fusion strategies for the fast and accurate species discrimination and predict amount of total polyphenol in four porcini mushrooms. The t‐distributed stochastic neighbor embedding based on mid‐level data fusion showed two species of Boletus edulis and B. umbriniporus have been identified. The order of correct rate of PLS‐DA models was mid‐level data fusionq (100%) > mid‐level data fusione (97.06%) = mid‐level data fusionv (97.06%) = stipes (97.06%) > low‐level data fusion (94.12%) > caps (91.18%). The order of correct rate of grid‐search support vector machine models was low‐level data fusion (100%) > caps (94.12%) > stipes (91.18%), and the order of particle swarm optimization support vector machine was low‐level data fusion (100%) > caps (97.06%) > stipes (88.24%). The mid‐level data fusionq and low‐level data fusion had best discrimination accuracy (100%) allowing each mushroom classed into its real species, which could be used for accurate discrimination of samples. B. edulis mushrooms had highest total polyphenol, with 14.76 mg/g dw and 17.33 in caps and stipes mg/g dw, respectively. The phenols were easier to accumulate in the caps in Leccinum rugosiceps (1.03) and B. tomentipes (1.19), and the opposite phenomenon is observed in B. edulis (0.85) and B. umbriniporus (0.95). The correlation coefficient and residual predictive deviation of best prediction model were 86.76% and 2.40%, respectively, indicating that that there is good relevance between FT‐MIR and total polyphenol content, which could be used to predict roughly polyphenols content in mushrooms.<br />The current study developed a way with fast, cheap and reliable for discriminating mushroom species and a way to roughly predict polyphenol content in mushrooms. Besides, the study applied three ways of feature extraction and provided data of content and enrich ability of total polyphenol in different morphological part of mushroom for the first time.
- Subjects :
- total polyphenol prediction
FT‐MIR spectroscopy
porcini mushroom
Correlation coefficient
Mid infrared
lcsh:TX341-641
species discrimination
Mass spectrometry
Leccinum rugosiceps
01 natural sciences
symbols.namesake
data fusion
0404 agricultural biotechnology
Food science
Original Research
Mathematics
Mushroom
biology
010401 analytical chemistry
04 agricultural and veterinary sciences
biology.organism_classification
040401 food science
0104 chemical sciences
Fourier transform
Polyphenol
Boletus edulis
symbols
lcsh:Nutrition. Foods and food supply
Food Science
Subjects
Details
- ISSN :
- 20487177
- Volume :
- 8
- Database :
- OpenAIRE
- Journal :
- Food Science & Nutrition
- Accession number :
- edsair.doi.dedup.....14fabdb64a68ca6b2fc24d9313101e9f
- Full Text :
- https://doi.org/10.1002/fsn3.1313